Credit Constraints and Beginning Farmers’ Production in the U.S.: Evidence from Propensity Score Matching with Principal Component Clustering
Abstract
:1. Introduction
2. Analytical Framework
3. Empirical Approach
= E(Y1|D = 1) + {E[Y0|D = 1] − E[Y0|D = 1] − E[Y0|D = 0]}
4. Data
5. Results
5.1. Clustering and Principal Components as Determinants of Credit Constraints
5.2. Matching Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Estimate | Pr > ChiSq |
---|---|---|
Intercept | −3.1991 (3.131) | 0.3069 |
lnHHI | −0.0921 (0.190) | 0.628 |
WCap | −0.2573 (0.195) | 0.1866 |
LTA | −1.3153 (1.625) | 0.4183 |
lnNetWorth | −0.0529 (0.174) | 0.7607 |
Off-Farm | −0.00067 (0.006) | 0.9164 |
FTE | 0.5632 (2.022) | 0.7806 |
Tenure | 0.0808 (0.068) | 0.2364 |
Age | −0.0142 (0.021) | 0.4987 |
Dependents | 0.333 ** (0.163) | 0.0413 |
NumLoans | 0.3777 (0.266) | 0.156 |
HomeValue | 0.009 *** (0.003) | 0.0009 |
NoCollege | −1.4255 (1.182) | 0.2278 |
Single | 0.9064 (0.620) | 0.1436 |
Midwest | 0.2327 (0.790) | 0.7683 |
South | 0.9114 (0.843) | 0.2796 |
West | 0.4415 (0.815) | 0.5882 |
GrainOil | −0.3075 (0.637) | 0.6291 |
Dairy | −1.791 ** (0.745) | 0.0163 |
Hog | −2.1394 (3.563) | 0.5482 |
Poultry | −2.4958 (1.802) | 0.1661 |
Beef | −0.4828 (0.519) | 0.3525 |
CLUSTER 2 | −10.2 *** (2.564) | <.0001 |
CLUSTER 3 | 2.04 *** (0.634) | 0.0013 |
Mean | St. Error | ||||
---|---|---|---|---|---|
CLUSTER | ALL | 1 | 2 | 3 | ALL |
N | 551 | 154 | 19 | 378 | 551 |
Constrained | 0.10 | 0.10 | 0.00 | 0.11 | 0.01 |
VProdTot | 24,844 | 25,732 | 14,927 | 25,007 | 5427 |
VProdPA | 578.13 | 536.77 | 1,490.27 | 548.46 | 154.22 |
LTA | 0.17 | 0.18 | 0.21 | 0.17 | 0.01 |
WCap | 0.53 | 0.24 | 0.09 | 0.66 | 0.19 |
lnNetWorth | 11.94 | 12.67 | 13.62 | 11.59 | 0.05 |
Off−Farm | 86.91 | 85.30 | 83.91 | 87.64 | 2.09 |
On−Farm | 1484 | 1298 | 1996 | 1527 | 55 |
FTE | 0.76 | 0.65 | 1.18 | 0.78 | 0.03 |
Tenure | 4.70 | 4.58 | 4.23 | 4.77 | 0.11 |
Age | 45.77 | 45.90 | 55.02 | 45.27 | 0.46 |
Dependents | 1.00 | 1.00 | 0.80 | 1.01 | 0.06 |
NumLoans | 0.75 | 0.73 | 1.03 | 0.74 | 0.04 |
HomeValue | 88,870 | 187,527 | 503,997 | 32,497 | 4935 |
NoCollege | 0.06 | 0.01 | 0.00 | 0.08 | 0.01 |
Single | 0.17 | 0.18 | 0.00 | 0.18 | 0.02 |
Midwest | 0.27 | 0.25 | 0.20 | 0.29 | 0.02 |
South | 0.48 | 0.43 | 0.19 | 0.52 | 0.02 |
West | 0.18 | 0.30 | 0.55 | 0.12 | 0.02 |
GrainOil | 0.08 | 0.08 | 0.02 | 0.09 | 0.01 |
DAIRY | 0.02 | 0.01 | 0.00 | 0.03 | 0.01 |
Hog | 0.01 | 0.01 | 0.03 | 0.01 | 0.00 |
Poultry | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 |
Beef | 0.38 | 0.35 | 0.34 | 0.39 | 0.02 |
lnHHI | 83,969 | 84,149 | 198,390 | 78,289 | 4432 |
FNW | 305,458 | 406,577 | 1,544,698 | 207,745 | 27,684 |
AcresTotal | 126.24 | 89.34 | 45.39 | 143.67 | 11.66 |
AcresOwned | 68.10 | 52.09 | 98.45 | 72.45 | 7.74 |
Female | 0.14 | 0.16 | 0.06 | 0.14 | 0.02 |
References
- Key, N.; Lyons, G. An Overview of Beginning Farms and Farmers; USDA-ERS: Washington, DC, USA; Economic Brief Number 29; 2019. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=95009 (accessed on 8 July 2020).
- Ifft, J.; Novini, A.; Patrick, K. Debt Use by US Farm Businesses, 1992–2011; USDA-ERS: Washington, DC, USA; Economic Information Bulletin; 2014. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=43843 (accessed on 8 July 2020).
- Hartarska, V.; Nadolnyak, D. Financing constraints and access to credit in a postcrisis environment: Evidence from new farmers in alabama. J. Agric. Appl. Econ. 2012, 44, 607–621. [Google Scholar] [CrossRef]
- Blancard, S.; Boussemart, J.P.; Briec, W.; Kerstens, K. Short- and Long-Run Credit Constraints in French Agriculture: A Directional Distance Function Framework Using Expenditure-Constrained Profit Functions. Am. J. Agric. Econ. 2006, 88, 351–364. [Google Scholar] [CrossRef]
- Pokharel, K.P.; Regmi, M.; Featherstone, A.M.; Archer, D.W. Examining the financial performance of agricultural cooperatives in the USA. Agric. Financ. Rev. 2019, 79, 271–282. [Google Scholar] [CrossRef]
- Rosenzweig, M.; Wolpin, K. Credit market constraints, consumption smoothing, and the accumulation of durable assets in low-income countries: Investments in bullocks in India. J. Polit. Econ. 1993, 101, 223–244. [Google Scholar] [CrossRef]
- Kandilov, A.M.; Kandilov, I.T. The impact bank branching deregulations on the US agricultural sector. Am. J. Agric. Econ. 2018, 100, 73–90. [Google Scholar] [CrossRef]
- Briggeman, B.C.; Towe, C.A.; Morehart, M.J. Credit constraints: Their existence, determinants, and implications for US farm and nonfarm sole proprietorships. Am. J. Agric. Econ. 2009, 91, 275–289. [Google Scholar] [CrossRef]
- Hartarska, V.; Nadolnyak, D.; Shen, X. Agricultural credit and economic growth in rural areas. Agric. Financ. Rev. 2015, 75, 302–312. [Google Scholar] [CrossRef]
- Nadolnyak, D.; Hartarska, V.; Shen, X. Farm credit system credit and farm income and output. Agric. Financ. Rev. 2017, 77, 95–110. [Google Scholar] [CrossRef]
- Kauffman, N.S. Credit Markets and Land Ownership for Young and Beginning Farmers. Choices 2013, 28, 1–5. [Google Scholar]
- Ahearn, M. Beginning farmers and ranchers at a glance. USDA Econ. Res. Serv. 2013, 22, 6. [Google Scholar] [CrossRef]
- Ahearn, M.C.; Newton, D.J. Beginning farmers and ranchers. Econ. Inf. Bull. 2009, 53. [Google Scholar] [CrossRef] [Green Version]
- Katchova, A.L.; Ahearn, M.C. Farm entry and exit from US agriculture. Agric. Financ. Rev. 2017, 77, 50–63. [Google Scholar] [CrossRef]
- Key, N.; Burns, C.; Lyons, G. Financial Conditions in the US Agricultural Sector: Historical Comparisons. USDA Econ. Res. Serv. 2019. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=95237 (accessed on 8 July 2020). [CrossRef]
- Darnhofer, I. Farm resilience in the face of the unexpected: Lessons from the COVID-19 pandemic. Agric. Hum. Values 2020. [Epub ahead of print]. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224090/ (accessed on 8 July 2020). [CrossRef] [PubMed]
- Nadolnyak, D.; Hartarska, V.; Griffin, B. The Impacts of Economic, Demographic, and Weather Factors on the Exit of Beginning Farmers in the United States. Sustainability 2019, 11, 4280. [Google Scholar] [CrossRef] [Green Version]
- Griffin, B.; Hartarska, V.; Nadolnyak, D.A. Retirement Age Farmers’ Exit and Disinvestment from Farming. Int. J. Econ. Financ. 2019, 11, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Katchova, A.L.; Dinterman, R. Evaluating financial stress and performance of beginning farmers during the agricultural downturn. Agric. Financ. Rev. 2018, 78, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Jappelli, T. Who is credit constrained in the US economy? Q. J. Econ. 1990, 105, 219–234. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.S. Mostly, Harmless, Econometrics: An. Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2008; p. 70. [Google Scholar]
- Barry, P.J.; Robison, L.J. Agricul tural Finance: Credit, Credit Constraints, and Consequences. In Handbook of Agricultural Economics; Gardner, B.L., Rausser, G.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 513–571. [Google Scholar]
- King, G.; Zeng, L. The dangers of extreme counterfactuals. Polit. Anal. 2006, 14, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Stuart, E.A. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, A.J.; Wichern, D.W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Schafer, J.L.; Kang, J.D. Average causal effects from nonrandomized studies: A practical guide and simulated case study. Psychol. Methods 2008, 13, 279–313. [Google Scholar] [CrossRef] [PubMed]
Outcome Variables | Variable Description |
---|---|
Constrained | Was denied credit at some time or selected out |
VProdPA | Total value of production per acre operated |
VProdTot | The Log of the total value production operated |
Common Support Variables | |
HHI | Household income |
lnHHI | The log of household income |
WCap | Working capital, excluding net positive |
NetWorth | Farm net worth, to operator household |
lnNetWorth | Log of farm net worth |
Off-Farm | Total operator and spouse weeks spent doing paid off-farm work |
Tenure | Number of years operating a farm |
Age | Age of survey respondent |
Dependents | Total members of household < 18 |
FTE | Full-time employee equivalent of all operator hours |
NumLoans | Number of outstanding loans |
HomeValue | Market value of principal operators dwelling |
NoCollege | 1 if Neither operator nor spouse have college education |
Single | 1 if Operator is not married |
Region | Dummies for Midwest, South, or West-base is Northeast |
ProducerType | Dummies for GrainOil, Dairy, Hog, Poultry, or Beef. Base is Other |
All BFRs. | Unconstrained | Constrained | Diff (0-1) | p Value | |
---|---|---|---|---|---|
N | 791 | 745 | 46 | ||
VProdTot | 33,125 | 33,384 | 28,681 | 4703 * | 0.10 |
VProdPA | 213.82 | 217.04 | 164.97 | 52.07 *** | 0.00 |
lnHHI | 10.82 | 10.85 | 10.43 | 0.42 *** | 0.03 |
WCap | 0.55 | 0.57 | 0.13 | 0.44 | 0.51 |
NetWorth | 12.05 | 12.05 | 11.93 | 0.12 | 0.91 |
Off-farm | 74.29 | 74.58 | 69.32 | 5.26 * | 0.07 |
Tenure | 4.71 | 4.69 | 5.08 | −0.39 | 0.13 |
Age | 47.49 | 47.78 | 42.5 | 5.28 ** | 0.02 |
Dependents | 0.95 | 0.91 | 1.62 | −0.71 *** | 0.00 |
FTE | 0.81 | 0.8 | 0.98 | −0.18 *** | 0.03 |
NumLoans | 0.73 | 0.71 | 1.06 | −0.36 *** | 0.03 |
HomeValue | 90,987 | 92,232 | 69,595 | 22,637 | 0.41 |
NoCollege | 0.07 | 0.07 | 0.01 | 0.06 | 0.25 |
Single | 0.18 | 0.18 | 0.26 | −0.08 | 0.20 |
Midwest | 0.27 | 0.27 | 0.21 | 0.06 | 0.61 |
South | 0.5 | 0.49 | 0.57 | −0.08 | 0.11 |
West | 0.17 | 0.17 | 0.18 | −0.01 | 0.36 |
GrainOil | 0.08 | 0.08 | 0.08 | 0 | 0.88 |
Dairy | 0.04 | 0.04 | 0.04 | 0 | 0.68 |
Hog | 0.01 | 0.01 | 0 | 0.01 | 0.62 |
Poultry | 0.02 | 0.02 | 0 | 0.01 | 0.60 |
Beef | 0.35 | 0.36 | 0.32 | 0.04 | 0.77 |
LTA | 0.18 | 0.18 | 0.19 | 0.01 | 0.66 |
Group Means by Treatment | |||||
---|---|---|---|---|---|
All | Control | Credit-Constrained | Difference | ||
N | 791 | 745 | 46 | ||
Unmatched | Total Prod. Value | $33,125 | $33,384 | $28,682 | $4703 |
Value per Acre | $214 | $217 | $165 | $52 * | |
N | 72 | 36 | 36 | ||
Nearest Neighbor | Total Prod. Value | $17,264 | $23,450 | $12,704 | $10,747 |
Value per Acre | $110 | $196 | $69 | $127 ** | |
N | 70 | 35 | 35 | ||
Mahalanobis | Total Prod. Value | $25,599 | $46,053 | $10,621 | $35,432 * |
Value per Acre | $126 | $204 | $57 | $147 *** |
Credit-Constrained (−) Unconstrained | ||||
---|---|---|---|---|
VPRODTOT | % | VPRODPA | % | |
Unmatched | −$4703 | −14% | −$52 | −24% |
Nearest Neighbor | −$10,747 | −46% | −$27 | −65% |
Mahalanobis | −$35,432 | −77% | −$147 | −72% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffin, B.; Hartarska, V.; Nadolnyak, D. Credit Constraints and Beginning Farmers’ Production in the U.S.: Evidence from Propensity Score Matching with Principal Component Clustering. Sustainability 2020, 12, 5537. https://doi.org/10.3390/su12145537
Griffin B, Hartarska V, Nadolnyak D. Credit Constraints and Beginning Farmers’ Production in the U.S.: Evidence from Propensity Score Matching with Principal Component Clustering. Sustainability. 2020; 12(14):5537. https://doi.org/10.3390/su12145537
Chicago/Turabian StyleGriffin, Bretford, Valentina Hartarska, and Denis Nadolnyak. 2020. "Credit Constraints and Beginning Farmers’ Production in the U.S.: Evidence from Propensity Score Matching with Principal Component Clustering" Sustainability 12, no. 14: 5537. https://doi.org/10.3390/su12145537
APA StyleGriffin, B., Hartarska, V., & Nadolnyak, D. (2020). Credit Constraints and Beginning Farmers’ Production in the U.S.: Evidence from Propensity Score Matching with Principal Component Clustering. Sustainability, 12(14), 5537. https://doi.org/10.3390/su12145537