Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Petroleum Contaminated Soils
2.2. Microbial Culture, Media, and Growth Conditions
2.3. The Mineral Salt Medium, Screening for Biosurfactant Production, Biosurfactant Production, Recovery, and Purification
2.4. Characterization and Identification of Microbial Species
2.5. Biosurfactant Characterization
2.6. Evaluation of Demulsification Capability of the Biosurfactants
2.7. Electrokinetic Set Up
2.8. Total Carbon Analysis
3. Results
3.1. Screening, Isolation, and Identification of the Strain for Hydrocarbon Degradation and Biosurfactant Production
3.1.1. Fourier Transform Infrared Spectroscopy (FTIR) Characterization of Biosurfactants
3.1.2. Thin-Layer Chromatography Analysis
3.1.3. Biosurfactant Yield, Surface Tension, and Critical Micelle Concentration of the Produced Biosurfactant
3.1.4. Demulsification of Emulsions
3.2. Bio-Electrokinetic Remediation
3.2.1. Variation of Current during Bio-Electrokinetic Treatment
3.2.2. Variation of Electroosmotic Flow of Water during Bio-Electrokinetic Treatment
3.2.3. Oil Extraction from the Contaminated Soil during Bio-Electrokinetic Treatment
3.2.4. Variation in pH and Its Effect on Bacterial Growth during the Bio-Electrokinetic Treatment
3.2.5. Effect of Electrode Configuration and Application of Biosurfactants on Hydrocarbon Removal
3.2.6. Effect of Electrode Configuration and Application of Biosurfactants on Energy Expenditure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17. [Google Scholar] [CrossRef]
- Souza, E.C.; Vessoni-Penna, T.C.; de Souza Oliveira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeter. Biodegr. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Elektorowicz, M.; Habibi, S.; Chifrina, R. Effect of electrical potential on the electro-demulsification of oily sludge. J. Colloid Interface Sci. 2006, 295, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.T.; Gu, Y.Y. A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 2011, 195, 11–29. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2019, 246, 125726. [Google Scholar] [CrossRef]
- Karthick, A.; Roy, B.; Chattopadhyay, P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. J. Environ. Manag. 2019, 243, 187–205. [Google Scholar] [CrossRef]
- Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 2015, 125, 1–8. [Google Scholar] [CrossRef]
- Kim, B.-K.; Baek, K.; Ko, S.-H.; Yang, J.-W. Research, and field experiences on electrokinetic remediation in South Korea. Sep. Purif. Technol. 2011, 79, 116–123. [Google Scholar] [CrossRef]
- Electorowicz, M.; Hatim, J. Application of surfactant enhanced electrokinetics for hydrocarbon contaminated soils. Paper presented at the 53rd Canadian Geotechnical Conference, Montreal, QC, Canada, 15–18 October 2000; pp. 617–624. [Google Scholar]
- Boulakradeche, M.O.; Akretche, D.E.; Cameselle, C.; Hamidi, N. Enhanced electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants. Electrochim. Acta 2015, 174, 1057–1066. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Surfactant-enhanced remediation of contaminated soil: A review. Eng. Geol. 2001, 60, 371–380. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Zang, T.; Wei, J.; Wu, H.; Wei, C.; Li, F. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour. Technol. 2019, 281, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Batista, S.B.; Mounteer, A.H.; Amorim, F.R.; Totola, M.R. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour. Technol. 2006, 97, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; He, J.; Liu, T.; Xin, X.; Hu, H. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere 2017, 189, 599–608. [Google Scholar] [CrossRef]
- Kim, W.S.; Jeon, E.K.; Jung, J.M.; Jung, H.B.; Ko, S.H.; Seo, C.I.; Baek, K. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environ. Sci. Pollut. Res. Int. 2014, 21, 4482–4491. [Google Scholar] [CrossRef] [PubMed]
- Pourfadakari, S.; Ahmadi, M.; Jaafarzadeh, N.; Takdastan, A.; Neisi, A.A.; Ghafari, S.; Jorfi, S. Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles. J. Hazard. Mater. 2019, 379, 120839. [Google Scholar] [CrossRef] [PubMed]
- Mena, E.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chem. Eng. J. 2016, 299, 30–36. [Google Scholar] [CrossRef]
- Tang, J.; He, J.; Xin, X.; Hu, H.; Liu, T. Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem. Eng. 2018, 334, 2579–2592. [Google Scholar] [CrossRef]
- Alshawabkeh, A.N. Electrokinetic Soil Remediation: Challenges and Opportunities. Sep. Sci. Technol. 2009, 44, 2171–2187. [Google Scholar] [CrossRef]
- Trummler, K.; Effenberger, F.; Syldatk, C. An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur. J. Lipid Sci. Technol. 2003, 105, 563–571. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process. Saf. Environ. 2015, 98, 354–364. [Google Scholar] [CrossRef]
- Bodour, A.A.; Miller-Maier, R.M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 1998, 32, 273–280. [Google Scholar] [CrossRef]
- Morikawa, M.; Hirata, Y.; Imanaka, T. A study on the structure–function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta 2000, 1488, 211–218. [Google Scholar] [CrossRef]
- Coutinho, J.O.; Silva, M.P.; Moraes, P.M.; Monteiro, A.S.; Barcelos, J.C.; Siqueira, E.P.; Santos, V.L. Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil. Bioresour. Technol. 2013, 128, 646–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APHA. Standard methods for the examination of water and wastewater. In Water Environment Federation, 25th ed.; Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Franson, M.A.H., Eds.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Dastgheib, S.M.; Amoozegar, M.A.; Elahi, E.; Asad, S.; Banat, I.M. Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol. Lett. 2008, 30, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Fadhile Almansoory, A.; Abu Hasan, H.; Idris, M.; Sheikh Abdullah, S.R.; Anuar, N.; Musa Tibin, E.M. Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: Optimization using central composite design (CCD). J. Ind. Eng. Chem. 2017, 47, 272–280. [Google Scholar] [CrossRef]
- Rikalovic, M.; Gojgic-Cvijovic, G.; Vrvic, M.; Karadzic, I. Production, and characterization of rhamnolipids from Pseudomonas aeruginosa san ai. J. Serb. Chem. Soc. 2012, 77, 27–42. [Google Scholar] [CrossRef]
- Sriram, M.I.; Gayathiri, S.; Gnanaselvi, U.; Jenifer, P.S.; Mohan Raj, S.; Gurunathan, S. Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour. Technol. 2011, 102, 9291–9295. [Google Scholar] [CrossRef]
- George, S.; Jayachandran, K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J. Appl. Microbiol. 2013, 114, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.M.D.A.; Sousa, M.A.S.B.; Barros Neto, E.L.; Oliveira, M.C.A. Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery (MEOR). J. Petrol. Explor. Prod. Tech. 2019. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.F.; Liu, J.; Lu, L.J.; Wen, Y.; Xu, J.C.; Yang, D.H.; Zhou, Q. Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp. Bioresour. Technol. 2009, 100, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J.; Rahman, P.K. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Nakhla, G.; Bassi, A. Electro-kinetic dewatering of oily sludges. J. Hazard. Mater. 2005, 125, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S.; Akretche, D.E.; Belhadj, B. Advances in Electrokinetic Remediation for the Removal of Organic Contaminants in Soils. 2013. Available online: http://www.intechopen.com/books/organic-pollutants-monitoringrisk-and-treatment (accessed on 20 June 2020).
- Rozas, F.; Castellote, M. Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim. Acta 2012, 86, 102–109. [Google Scholar] [CrossRef]
- Agnew, K.; Cundy, A.B.; Hopkinson, L.; Croudace, I.W.; Warwick, P.E.; Purdie, P. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: Results from a pilot-scale on-site trial. J. Hazard. Mater. 2011, 186, 1405–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Guo, S.; Li, S.; Zhang, L.; Wang, S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil. Chem. Eng. 2012, 203, 231–238. [Google Scholar] [CrossRef]
- Rocha, E.S.F.C.P.; Roque, B.A.C.; Rocha, E.S.N.M.P.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions. AMB Express 2017, 7, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, E.K.; Jung, J.M.; Kim, W.S.; Ko, S.H.; Baek, K. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: A full-scale study. Environ. Sci. Pollut. Res. Int. 2015, 22, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Liu, R.; Liu, Z.; Du, J.; Tao, C. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue. Environ. Sci. Pollut. Res. Int. 2015, 22, 16004–16013. [Google Scholar] [CrossRef]
- Das, K.; Mukherjee, A.K. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 2007, 98, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
Item No. | Soil Composition | Quantity |
---|---|---|
1. | Soil type | 71% sand, 20% silt, 9% clay |
2. | Initial total organic carbon | 40 mg/kg |
3. | Organic carbon after contamination | 428 ± 0.11 mg/kg |
4. | Porosity | 0.41 |
5. | Conductivity | 274 µS/cm |
6. | Particles sizes | 74.13% > 425 µm, 21.45%, 425–300 µm, 4.42% < 300 µm |
7. | Major elements | O = 48.83 wt%, Al = 3.69 wt%, Si = 26.18 wt%, K = 1.37 wt%, Fe = 7.2 wt% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidudu, B.; M. Nkhalambayausi Chirwa, E. Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil. Sustainability 2020, 12, 5613. https://doi.org/10.3390/su12145613
Gidudu B, M. Nkhalambayausi Chirwa E. Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil. Sustainability. 2020; 12(14):5613. https://doi.org/10.3390/su12145613
Chicago/Turabian StyleGidudu, Brian, and Evans M. Nkhalambayausi Chirwa. 2020. "Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil" Sustainability 12, no. 14: 5613. https://doi.org/10.3390/su12145613
APA StyleGidudu, B., & M. Nkhalambayausi Chirwa, E. (2020). Application of Biosurfactants and Pulsating Electrode Configurations as Potential Enhancers for Electrokinetic Remediation of Petrochemical Contaminated Soil. Sustainability, 12(14), 5613. https://doi.org/10.3390/su12145613