Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Fermentation of Tea Leaves
2.4. Extraction of Phenolic Compounds
2.5. Determination of Total Phenolic Content
2.6. Determination of Antioxidant Activity
2.7. Determination of Catechins and Phenolic Acids Content
2.8. Determination of Tea Pigment (Theaflavins, Theabrownins, and Thearubigins)
2.9. Determination of Flavonols Content
2.10. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content of Fresh and Fermented Tea at Different Fermentation Period
3.2. Measurement of Catechins of Fermented Tea during Fermentation Period
3.3. Theaflavins (TF), Thearubigins (TR), and Theabrownins (TB) Content
3.4. Measurement of Flavonols of Fermented Tea during Fermentation Period
3.5. Measurement of Phenolic Acids of Fermented Tea during Diferrent Fermentation Period
3.6. In Vitro Antioxidant Activity of Fresh and Fermented Tea Leaves during Different Fermentation Periods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taylor, S. Tea/type, production and trade. In Encyclopedia of Food Sciences and Nutrition; Caballero, B., Trugo, L., Finglas, P.M., Eds.; Academic Press: Oxford, UK, 2003; pp. 5737–5743. [Google Scholar]
- Chaikaew, S.; Baipong, S.; Sone, T.; Kanpiengjai, A.; Chui-chai, N.; Asano, K.; Khanongnuch, C. Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract. J. Microbiol. 2017, 55, 720–729. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Pakdeeto, A.; Thawai, C.; Yukphan, P.; Okada, S. Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J. Gen. Appl. Microbiol. 2007, 53, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Huang, Y.Y.; Yang, W.P.; Zhang, B.W.; Quan, X.X. Screening lactic acid bacteria with high yielding-acid capacity from pickle tea for their potential uses of inoculating to ferment tea products. J. Food Sci. Technol. 2015, 52, 6727–6734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Aye, K.N. The legend of laphet: A Myanmar fermented tea leaf. J. Ethn. Foods. 2015, 2, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Xiao, X.; Cong, L.; Wu, M.; Huang, Y.; Yao, Y. A fermented tea with high levels of gallic acid processed by anaerobic solid-state fermentation. LWT 2016, 71, 260–267. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Liu, P.P.; Shi, J.; Gao, Y.; Wang, Q.S.; Yin, J.F. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 2018, 249, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Jin, S.; Wang, D.; Zhao, F.; Yu, Y.; Zheng, D.; Ye, N. Identification of the origin of white tea based on mineral element content. Food Anal. Method 2017, 10, 191–199. [Google Scholar] [CrossRef]
- Coopers, R.; Morre, D.J.; Morre, D.M. Medicinal benefit of green tea. J. Altern. Complement Med. 2005, 11, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Shida, Y.; Hakariya, T.; Sakai, H. Anti-cancer effects of green tea polyphenols against prostate cancer. Molecules 2019, 24, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almajano, M.P.; Carbó, R.; Jiménez, J.A.L.; Gordon, M.H. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chew, Y.L. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem. 2007, 102, 1214–1222. [Google Scholar] [CrossRef]
- Wakamatsu, M.; Yamanouchi, H.; Sahara, H.; Iwanaga, T.; Kuroda, R.; Yamamoto, A.; Minami, Y.; Sekijima, M.; Yamada, K.; Kajiya, K. Catechin and caffeine content in green tea at different harvest periods and their metabolism in miniature swine. Food Sci. Nutr. 2019, 7, 2769–2778. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Yang, X.R.; Li, K.K.; Li, C.R.; Li, L.L.; Li, J.X.; Huang, H.; Ho, Y.; Ye, C.; Song, X. Simultaneous determination of theanine, gallic acid, purine alkaloid, catechins and theaflavins in black tea using HPLC. Int. J. Food Sci. Technol. 2010, 45, 1263–1269. [Google Scholar] [CrossRef]
- Wu, C.; Xu, H.; Hertia, J.; Andlauer, W. Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chem. 2012, 132, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Engelhardt, U.H.; Thrane, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.T.; Perterson, J. Tea and flavonoids: Where we are, where to go next. Am. J. Clin. Nutr. 2013, 98, 1611S–1618S. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.N.; Zhang, L.; Wang, S.; Shi, S.P.; Jiang, Y.; Li, N.; Tu, P.F. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Food Chem. 2014, 152, 539–545. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1977, 28, 49–55. [Google Scholar]
- Benzie, F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Moore, J.; Yu, L. High-throughput relative DPPH radical scavenging capacity assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Jiang, Y.M.; Caffin, N.; D’Arcy, B.; Datta, N.; Liu, X.; Singanusong, R.; Xu, Y. Phenolic compounds in tea from Australian supermarkets. Food Chem. 2006, 96, 614–620. [Google Scholar] [CrossRef]
- Wang, H.; Helliwell, K. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatrography. Food Res. Int. 2001, 34, 223–227. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of tea polyphenol solution with different pH at different temperature. Int. J. Food Prop. 2014, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Vuong, Q.V.; Golding, J.B.; Stathopoulos, C.E.; Nguyen, M.H.; Roach, P.D. Optimizing conditions for the extraction of catechins from green tea using hot water. J. Sep. Sci. 2011, 34, 3099–3106. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Shii, T.; Matsuo, Y.; Tanaka, T.; Jiang, Z.H.; Kouno, I. A new catechin oxidation product and polymeric polyphenols of post fermented tea. Food Chem. 2011, 129, 830–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Kiso, M.; Goto, T.M. Effect of pH and tea concentration on extraction of catechins from Japanese Green Tea. ACS Symp. Ser. 2000, 754, 347–354. [Google Scholar]
- Jakubczyk, K.; Kalduńska, J.; Kochman, J.; Janda, K. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, Y.; Jiang, J.; Xie, H.; Ding, Z.; Ding, S.; Wang, H. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics. HortScience 2019, 54, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Jiang, Y.; Datta, N.; Singanusong, R.; Liu, X.; Duan, J.; Raymont, K.; Lisle, A.; Xu, Y. HPLC analyses of flavonols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 2004, 84, 253–263. [Google Scholar] [CrossRef]
- Su, Y.L.; Leung, L.K.; Huang, Y.; Chen, Z.-Y. Stability of tea theaflavins and catechins. Food Chem. 2003, 83, 189–195. [Google Scholar]
- Chen, Z.Y.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of green tea catechins in tea drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liang, Y.; Dong, J.; Lu, J. Tea extraction methods in relation to control of epimerization of tea catechins. J. Sci. Food. Agric. 2007, 87, 1748–1752. [Google Scholar] [CrossRef]
- Das, S.; Samanta, T.; Datta, A.K. Analysis and modeling of major polyphenols during oxidationin production of black tea. J. Food Process. Preserv. 2019, 43, e14283. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acids in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compost. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Altunkaya, A. Partial purification and characterization of polyphenoloxidase from Turkish tea leaf (Camellia sinensis L.). Int. J. Food Prop. 2014, 17, 1490–1497. [Google Scholar] [CrossRef]
- Tong, T.; Liu, Y.J.; Kang, J.; Zhang, C.M.; Kang, S.G. Antioxidant activity and main chemical components of a novel fermented tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izawa, K.; Amino, Y.; Kohmura, M.; Ueda, Y.; Kuroda, M. 4.16-human–environment interactions—Taste. In Comprehensive Natural Products II.; Mander, L., Liu, H.W., Eds.; Elsevier: Oxford, UK, 2010; pp. 631–671. [Google Scholar]
- Kuhnert, N. Unraveling the structure of the black tea thearubigins. Arch. Biochem. Biophys. 2010, 501, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Peng, C.; Gong, J. Effect of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J. Sci. Food Agric. 2011, 91, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Jang, H.L.; Lee, J.H.; Choi, Y.; Kim, H.; Hwang, J.; Seo, D.; Kim, S.; Nam, J.S. Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica Juncea) kimchi extracts during different fermentation periods. Food Sci. Biotechnol. 2017, 26, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, G.; Pan, H.; Fan, L.; Soccol, C.R.; Pandey, A. Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technol. Biotech. 2012, 50, 32–39. [Google Scholar]
- Jabloñska-Ryoe, E.; Slawiñska, A.; Szwajgier, D. Effect of lactic acid fermentation on antioxidant properties and phenolic acid contents of oyster (Pleurotus ostreatus) and chanterelle (Cantharellus cibarius) mushrooms. Food Sci. Biotechnol. 2016, 25, 439–444. [Google Scholar] [CrossRef]
- Adebo, O.A.; Medina-Meza, I.G. Impact of fermentation on phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [Green Version]
- Curiel, J.A.; Rodríguez, K.; Landete, J.M.; de las Rivas, B.; Muñoz, R. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem. 2010, 120, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Filannino, P.; Gobbetti, M.; De Angelis, M.; Di Cagno, R. Hydroxycinnamic acids used as external acceptors of electrons: An energetic advantage for strictly heterofermentative lactic acid bacteria. Appl. Environ. Microbiol. 2014, 80, 7574–7582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Li, C.; Liu, S.; Yang, L. The Galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China. Sci. World J. 2014, 2014, 863984. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Horie, M.; Nara, K.; Sugino, S.; Umeno, A. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Food Sci. Nutr. 2017, 5, 639–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somsong, P.; Tiyayon, P.; Srichamnong, W. Antioxidant of green tea and pickle tea product, miang, from northern Thailand. Acta Hortic. 2018, 1210, 241–247. [Google Scholar] [CrossRef]
Phenolic Acids (mg/g DW) | ||||
---|---|---|---|---|
Caffeic Acid | Chlorogenic Acid | p-coumaric Acid | Sinapic Acid | |
Shoots | 10.46 ± 0.18 a | 2.26 ± 0.19 a | 0.19 ± 0.01 a | 0.33 ± 0.013 d,e |
Control | 5.73 ± 0.24 b | 0.47 ± 0.19 b | ND | 0.28 ± 0.002 d,e |
D0 | 5.73 ± 0.09 b | 0.27 ± 0.00 b | 0.11 ± 0.01 b | 0.46 ± 0.006 c,d |
D5 | 4.12 ± 0.62 b | 0.32 ± 0.08 b | 0.07 ± 0.03 b | 0.19 ± 0.091e |
D15 | 8.67 ± 1.22 a | 0.34 ± 0.03 b | 0.11 ± 0.09 b | 0.45 ± 0.079 c,d |
D30 | 9.90 ± 1.95 a | 0.30 ± 0.13 b | 0.12 ± 0.04 b | 0.59 ± 0.145 a,b,c |
D60 | 9.99 ± 1.29 a | 0.38 ± 0.19 b | 0.08 ± 0.05 b | 0.76 ± 0.17 a,b |
In Vitro Antioxidant Activity (µmol TE per g DW) | |||
---|---|---|---|
FRAP | DPPH | ORAC | |
Shoots | 10,614.39 ± 259.84 a | 6892.68 ± 68.95 a | 7037.17 ± 310.15 a |
Control | 4228.29 ± 110.18 b | 5535.67 ± 181.79 b | 3561.11 ± 309.21 b |
D0 | 1971.53 ± 27.27 c | 4832.79 ± 36.35 c | 2004.84 ± 33.81 c |
D5 | 1843.28 ± 17.52 d | 4182.08 ± 101.35 d | 2049.88 ± 217.75 c |
D15 | 1563.62 ± 31.71 e | 3945.87 ± 137.926 e | 2250.25 ± 145.95 c |
D30 | 1371.37 ± 12.56 f | 3168.12 ± 111.09 f | 1990.69 ± 147.27 c |
D60 | 950.72 ± 6.25 g | 1970.73 ± 178.89 g | 1391.42 ± 143.19 d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somsong, P.; Santivarangkna, C.; Tiyayon, P.; Hsieh, C.-M.; Srichamnong, W. Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing. Sustainability 2020, 12, 5853. https://doi.org/10.3390/su12145853
Somsong P, Santivarangkna C, Tiyayon P, Hsieh C-M, Srichamnong W. Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing. Sustainability. 2020; 12(14):5853. https://doi.org/10.3390/su12145853
Chicago/Turabian StyleSomsong, Pimpinan, Chalat Santivarangkna, Pimsiri Tiyayon, Chi-Ming Hsieh, and Warangkana Srichamnong. 2020. "Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing" Sustainability 12, no. 14: 5853. https://doi.org/10.3390/su12145853
APA StyleSomsong, P., Santivarangkna, C., Tiyayon, P., Hsieh, C. -M., & Srichamnong, W. (2020). Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing. Sustainability, 12(14), 5853. https://doi.org/10.3390/su12145853