The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate Composition Analysis
2.2. Electronic Nose Analysis of Volatile Compounds
2.3. Analysis of Electrochemical Parameters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of A. bisporus White and Brown Mushrooms
3.2. Volatile Compounds of A. bisporus White and Brown Mushrooms
3.3. Electrochemical Parameters of A. bisporus White and Brown Mushrooms
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Willer, H.; Lernoud, J.; Kemper, L. The world of organic agriculture 2018: Summary. In The World of Organic Agriculture. Statistics & Emerging Trends 2018; Willer, H., Lernoud, J., Eds.; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2018; pp. 22–32. Available online: https://orgprints.org/34669/1/WILLER-LERNOUD-2018-final-PDF-low.pdf (accessed on 12 November 2019).
- Willer, H.; Meredith, S.; Moeskops, B.; Busacca, E. Organic in Europe: Prospects and developments. In The World of Organic Agriculture. Statistics & Emerging Trends 2018; Willer, H., Lernoud, J., Eds.; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2018; pp. 210–218. Available online: https://orgprints.org/34669/1/WILLER-LERNOUD-2018-final-PDF-low.pdf (accessed on 12 November 2019).
- Atila, F.; Owaid, M.N.; Shariati, A.M. The nutritional and medical benefits of Agaricus Bisporus: A review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 281–286. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogon, K.; Bernas, E.; Duda-Chodak, A. Nutraceuticals and antioxidant activity of prepared for consumption commercial mushrooms Agaricus bisporus and Pleurotus ostreatus. J. Food Qual. 2015, 38, 111–122. [Google Scholar] [CrossRef]
- Mircea, C.; Cioanca, O.; Iancu, C.; Tataringa, G.; Hancianu, M. In vitro antioxidant activity of some extracts obtained from Agaricus Bisporus brown, Pleurotus Ostreatus and Fomes Fomentarius. Farmacia 2015, 63, 927–933. Available online: http://www.revistafarmacia.ro/201506/art-23-Mircea_927-933.pdf (accessed on 10 December 2019).
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 1–14. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yan, H.; Chen, J.; Zhang, X. Bioactive proteins from mushrooms. Biotechnol. Adv. 2011, 29, 667–674. [Google Scholar] [CrossRef]
- Mattila, P.; Könkö, K.; Eurola, M.; Pihalava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 12343–12348. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.C.K. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 62–166. [Google Scholar] [CrossRef] [Green Version]
- Thangthaeng, N.; Miller, M.G.; Gomes, S.M.; Shukitt-Hale, B. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats. Nutr. Res. 2015, 35, 1079–1084. [Google Scholar] [CrossRef]
- Adams, L.S.; Phung, S.; Wy, X.; Ki, L.; Chen, S. White button mushroom (Agaricus Bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr. Cancer. 2008, 60, 744–756. [Google Scholar] [CrossRef]
- Jeong, S.C.; Koyyalamudi, S.R.; Jeong, Y.T.; Song, C.H.; Pang, G. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. J. Med. Food. 2012, 15, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Nakano, M.; Morii, Y.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K. Hepatic LDL receptor mrna in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J. Nutr. 2000, 130, 2151–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gursoy, N.; Sarikurkcu, C.; Cengiz, M.; Solak, M.H. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol. 2009, 47, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Y.; Wu, T.P.; Huang, S.J.; Mau, J.L. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem. 2007, 103, 1457–1464. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, T.; Ye, R. Differentation of eight commercial mushrooms by electronic nose and gas chromatography-mass spectrometry. J. Sens. 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bonte, A.; Neuweger, H.; Goesmann, A.; Thonar, C.; Mäder, P.; Langenkämper, G.; Niehaus, K. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. J. Sci. Food Agric. 2014, 94, 2605–2612. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Husson, O.; Audebert, A.; Benada, J.; Soglonou, B.; Tano, F.; Dieng, I.; Bousset, L.; Sarthou, J.P.; Joseph, S.; Menozzi, P.; et al. Leaf Eh and pH: A novel indicator of plant stress. Spatial, temporal and genotypic variability in rice (Oryza sativa L.). Agronomy 2018, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, M.; Szymczak, P.; Elkner, K.; Dabrowska, A.; Kret, A.; Danilcenko, H. Some aspects of nutritive and biological value of carrot cultivars with orange, yellow and purple-coloured roots. Veg. Crop. Res. Bull. 2007, 67, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Kappert, R.; Meltsch, B. Introducing a complementary investigation method concerning fruit and vegetable quality and human health. Acta Hortic. 2007, 44, 9–90. [Google Scholar] [CrossRef]
- Bloksma, J.; Northolt, M.; Huber, M. Electro-chemical parameters. In Parameters for Apple Quality. Part 1 Report; Louis Bolk Institute: Driebergen, The Netherlands, 2001; pp. 78–81. Available online: http://www.louisbolk.org/downloads/1279.pdf (accessed on 2 February 2018).
- Weijn, A. Unravelling the Bruising–Discoloration of Agaricus bisporus, the Button Mushroom. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- ISO 20483:2006. Cereals and Pulses–Determination of the Nitrogen Content and Calculation of the Crude Protein Content–Kjeldhal Method; International Standard Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Horwitz, W. (Ed.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Rittich, B.; Zaludova, R. Modification of the henneberg-stohmann method of fibre determination—the influence of filtration method on the content of determination fibre. Zivocisna Vyrob. 1985, 30, 289–294. [Google Scholar]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Toschi, T.G. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Ploeger, A.; Vogtmann, H. Lebensmittelqualität–Ganzheitliche Methoden und Konzepte; Verlag, C.F. Muller: Karlsruhe, Germany, 1991; pp. 20–65. [Google Scholar]
- Laborde, J.; Delpech, R. Dry matter content of fruitbodies of Agaricus bisporus (lange sing.): Evaluation during cropping. In Science and Cultivation of Edible Fungi; Maher, M.J., Ed.; Balkema: Rotterdam, The Netherlands, 1991; pp. 659–664. [Google Scholar]
- Nogueira de Andrade, M.C.; Zied, D.C.; de Almeida Minhoni, M.T.; Kopytowski Filho, J. Yield of four Agaricus Bisporus strains in three compost formulations and chemical composition analyses of the mushrooms. Braz. J. Microbiol. 2008, 39, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Burton, K.S.; Noble, R. The influence of flush number, bruising and storage temperature on mushrooms quality. Postharvest Biol. Technol. 1993, 3, 39–47. [Google Scholar] [CrossRef]
- Vetter, J. Chemical composition of fresh and conserved Agaricus bisporus mushroom. Eur. Food Res. Technol. 2003, 217, 10–12. [Google Scholar] [CrossRef]
- Braaksma, A.; Schaap, D.J. Protein analysis of the common mushroom Agaricus bisporus. Postharvest Biol. Technol. 1996, 7, 119–127. [Google Scholar] [CrossRef]
- Guillamon, E.; Garcia-Lafuente, A.; Lozano, M.; D.´Arrigo, M.; Rostagno, M.A.; Villares, A.; Martinez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef]
- Paulauskiene, A.; Danilcenko, H.; Jariene, E.; Gajewski, M.; Seroczyńska, A.; Szymczak, P.; Korzeniewska, A. Quality of pumpkin fruits in relation to electrochemical and antioxidative properties. Veg. Crop. Res. Bull. 2006, 65, 137–144. [Google Scholar]
- Kaciu, S.; Shala-Mayrhofer, V.; Mirecki, N.; Aliu, S.; Jezik, K. Influence of environment in electro-chemical quality of tomato. Int. J. Hortic. Sci. Technol. 2010, 16, 17–20. [Google Scholar] [CrossRef]
- Ergun, M.; Jezik, K.M. Measuring electrochemical fruit quality of refrigerated ‘hanita’ plum by bioelectric vincent method. Zemdirb. Agric. 2011, 98, 15–322. Available online: https://pdfs.semanticscholar.org/d014/363825bb17bc6d7107324ed295f2271ef6ca.pdf (accessed on 5 October 2019).
- Garban, Z. The fundamental problems regarding the relative hydrogen (rH) score in biochemistry. Note, I. Theoretical bases of rH determination. J. Agroaliment. Process. Technol. 2008, 14, 50–57. Available online: https://www.scribd.com/document/383132708/The-fundamental-problems-regarding-the-relative-hydrogen-rH-score-in-biochemistry-by-Garban-Zeno-ro (accessed on 20 October 2019).
- Binur, K.; Serap, K. Using of electrical conductivity on food control and food process. Int. J. Agric. Environ. Res. 2016, 2, 1835–1846. Available online: https://ijaer.in/uploads/ijaer_02__130.pdf (accessed on 25 November 2019).
White | White Eco | Brown | Brown Eco | |
---|---|---|---|---|
K (g) | 43.04 ± 0.10 ab,* | 44.08 ± 0.10 a | 42.10 ± 0.20 ab | 41.03 ± 0.10 b |
P (g) | 10.81 ± 0.01 c | 11.80 ± 0.20 a | 11.74 ± 0.02 a | 11.10 ± 0.01 b |
Mg (g) | 1.01 ± 0.05 a | 1.02 ± 0.05 a | 1.10 ± 0.01 a | 1.05 ± 0.06 a |
Zn (mg) | 69.00 ± 0.10 b | 61.05 ± 0.10 c | 90.80 ± 0.1 a | 68.83 ± 0.10 b |
Possible Matches Compounds | Odor Description a | KI MXT-5 b | KI MXT-17 c | White | White Eco | Brown | Brown Eco |
---|---|---|---|---|---|---|---|
Aldehydes | |||||||
Pentanal | Almond; green; herbaceous; malty; pungent; rubber | 691 | 776 | + | + | + | + |
Furfural | Almond; bread; sweet | 827 | 972 | + | + | + | |
N-nonanal | Chlorine; citrus; fatty; floral; fruity; gaseous; gravy; green; lavender; melon; soapy; sweet | 1100 | 1194 | + | + | ||
Benzeneacetaldehyde | Floral; grassy; green; hawthorn; honey; rose; sweet | 1043 | 1188 | + | |||
p-Anisaldehyde | Anise; minty; sweet | 1250 | 1452 | + | + | ||
Esters | |||||||
Ethyl 2-methyl Butyrate | Apple; blackberry; fruity; green; strawberry, sweet | 849 | 907 | + | + | + | |
Ethyl octanoate | Anise; baked fruity; fatty; floral; fresh; green; leafy; mentholic; soapy; sweet; waxy | 1196 | 1260 | + | + | ||
Terpen | |||||||
Alpha-Phellandrene | Minty; spicy; terpenic; turpentine | 1004 | 1029 | + | |||
Alcohols | |||||||
Benzyl alcohol | Aromatic; floral; fruity; sweet | 1034 | 1220 | + | + | + | + |
1-Nonanol | Fatty; floral; fruity; green | 1165 | 1277 | + | + | + | + |
White | White Eco | Brown | Brown Eco | |
---|---|---|---|---|
pH | 6.81 ± 0.03 a,* | 6.70 ± 0.40 b | 6.70 ± 0.03 b | 6.64 ± 0.02 b |
Redox potential (mV) | 119.33 ± 5.50 b | 107.33 ± 3.51 c | 170.00 ± 1.00 a | 76.67 ± 1.15 d |
Electrical conductivity (µS cm−1) | 1061.33 ± 1.53 b | 1020.67 ± 2.77 c | 1149.33 ± 2.52 a | 1154.33 ± 1.53 a |
P value (µW) | 3.18 ± 0.10 c | 2.91 ± 0.03 d | 3.57 ± 0.18 b | 5.19 ± 0.04 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulauskienė, A.; Tarasevičienė, Ž.; Šileikienė, D.; Česonienė, L. The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms. Sustainability 2020, 12, 6187. https://doi.org/10.3390/su12156187
Paulauskienė A, Tarasevičienė Ž, Šileikienė D, Česonienė L. The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms. Sustainability. 2020; 12(15):6187. https://doi.org/10.3390/su12156187
Chicago/Turabian StylePaulauskienė, Aurelija, Živilė Tarasevičienė, Daiva Šileikienė, and Laima Česonienė. 2020. "The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms" Sustainability 12, no. 15: 6187. https://doi.org/10.3390/su12156187
APA StylePaulauskienė, A., Tarasevičienė, Ž., Šileikienė, D., & Česonienė, L. (2020). The Quality of Ecologically and Conventionally Grown White and Brown Agaricus bisporus Mushrooms. Sustainability, 12(15), 6187. https://doi.org/10.3390/su12156187