Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach?
Abstract
:1. Introduction
1.1. The Study Area and its Regional Climate Vulnerability
- (1)
- a significant increase in heat stress and sultriness, particularly in the lowlands;
- (2)
- an intensification of heavy rain events and winter precipitation with a correspondingly increased flood risk of the Rhine system and its tributaries;
- (3)
- a projected increase of drought frequency and severity, mainly in the summer, which will result in a stronger seasonal accentuation of precipitation;
- (4)
- a decrease of winter snow cover duration that challenges the winter sports-based economies of the higher mountain areas.
1.2. Why that Study Area?
2. Materials and Methods
2.1. Conceptual Framework
- -
- Climatic stressors are climatic phenomena like heatwaves, droughts, heavy rain events, floods, etc., that cause stress to society and companies. In our study, we integrated only climatic phenomena that show a clear change signal in future climate simulations.
- -
- Exposure means the spatial localization of elements that are exposed to climatic stressors, i.e., the site of a company or an industrial area. This meaning follows the understanding of exposure as presented in the guideline by the UBA [27], and is not in line with other approaches that define climatic hazards or stressors as a part of the exposure, e.g., the IPCC Report 2007 [4]. For our approach, we chose this practice-oriented definition that stands in the tradition of a frequently cited vulnerability framework [29] and is used in similar, more quantitatively oriented assessments.
- -
- Sensitivity (in other approaches “susceptibility” or “fragility”) describes how an exposed element reacts to a climatic stressor in the function of its socio-economic or demographic characteristics. In our meso-scale assessment, exposed elements are mostly communities and their built-up areas whose sensitivity is determined by several economic and demographic factors.
- -
- Impact refers to an observed or potential negative effect of a climatic stressor on an exposed element in function of its sensitivity. Impacted areas can be identified by overlaying climatic stressors, e.g., flood prone areas and exposed elements (e.g., built-up areas). The impact can be interpreted as the negative or “weak” side of vulnerability.
- -
- Adaptive Capacity is the ability of an element or system to minimize the impact of a climatic stressor by taking adequate measures and/or changing inappropriate behavior. It is closely linked to the concepts of “resilience” and “coping capacity” and represents the “strong” side of vulnerability. The adaptive capacity is determined by a multitude of cultural, technical, institutional, legal, psychological, etc., factors and may have repercussions on exposure and sensitivity, as indicated by the dashed arrows in Figure 2.
- -
- Vulnerability in our study is defined as the aggregation of all potential impacts onto the analyzed system minus its adaptive capacity.
2.2. Operationalization of the Vulnerability Framework
- A synthesis of relevant climate change impacts in the TMO was worked out, mostly by a literature review of existing assessments and adaptation strategies [1,7,8,9,17]. In particular, the publication by the Ministry of the Environment of the Federal State of Baden-Württemberg [9] served as a sound qualitative basis for identifying relevant indicators, as it describes many risks and sensitivities of regional enterprises that were derived from recent stakeholder workshops. As a result, we drew an overview scheme that contains and categorizes the most relevant impacts in the given regional context (cf. Appendix A, Figure A1).
- The relevant impacts for our assessment were selected with a focus on economic vulnerability. The selection process was supported by expert interviews carried out within the Clim’Ability project [38,39]. The interviewees were company representatives from various industries in the trinational subareas of the TMO (n = 80). Each relevant impact was further refined as an indicandum (cf. Table 1, Table 2, Table 3 and Table 4), which we define as “a relevant climate change aspect that needs to be operationalized by using an indicator” [40,41].
- A list of potential indicators was created. Each indicandum had to be covered by at least one indicator. The potential indicators and the vulnerability concept were combined, and the indicators were categorized according to the components of the vulnerability concept (cf. Figure 3).
- Data were collected for all identified potential indicators. For several indicators, especially in the areas of sensitivity and impact, data from various German, Swiss and French institutions had to be researched and combined. Different national definitions of statistical parameters limited the comparability of the data, and the language barrier was an additional obstacle in some cases.
- The collected data were validated applying a standardized suitability check for each indicator [42] based on a method published by Birkmann [32]. Indicators with poor data quality or lack of data homogeneity were dropped, e.g., the number of employees and the total number of companies per community. The 18 indicators that met the quality criteria are shown in Figure 3.
- As a last step, the 18 indicators were statistically analyzed and mapped individually. Then, they were aggregated into sub-indices according to their respective component of the vulnerability concept and finally combined into the Vulnerability Index (Figure 3). The aggregation process is illustrated in Figure 4, where the numbers represent pixel values in the raster files. In order to achieve comparability, the original layers were normalized by calculating their respective Z-scores. They were then reclassified into five classes using the algorithm proposed by Jenks and Caspall [43]. Aggregation was conducted by the addition of class values on a raster pixel basis. These were then again reclassified and aggregated into the layers of the vulnerability components. Aggregating and reclassifying these four layers resulted in the dimensionless Vulnerability Index. The described steps were necessary to enable the vulnerability subcomponents to equally attribute to the Vulnerability Index (cf. Figure 2).
2.3. Data Basis of the used Indicators
3. Results
4. Discussion
4.1. Strengths and Shortcomings of the Assessment
4.2. Starting Points for Possible Adaptation Strategies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Table 1 | |
1 | Model Ensemble provided by the German Weather Service (DWD) and calculated within the EURO-CORDEX initiative (2016). |
Table 2 | |
2 | Copernicus Programme. Corine Land Cover (CLC) 2012, Version 18.5.1. https://land.copernicus.eu/pan-european/corineland-cover/clc-2012?tab=download (accessed on 14 June 2018). |
3 | GeoRhena. catalogue. https://sdi.georhena.eu/geonetwork/srv/fre/catalog.search#/home (accessed on 12 June 2018). |
OpenStreetMap Contributers. Planet dump retrieved from https://planet.osm.org, 2018 (accessed on 12 June 2018). | |
Table 3 | |
4 | GeoRhena. catalogue. https://sdi.georhena.eu/geonetwork/srv/fre/catalog.search#/home (accessed on 12 June 2018). |
5 | Statistische Ämter des Bundes und der Länder, Deutschland. Realsteuervergleich: 2015. https://www.statistikportal.de/ (accessed on 15 June 2018). |
Ministère de l’Action et des Comptes publics. Données de fiscalité directe locale 2015. https://www.impots.gouv.fr/portail/statistiques (accessed on 15 June 2018). | |
6 | BFS. Statistik der Unternehmensstruktur (STATENT): 2014 (accessed on 15 June 2018). |
INSEE. Recensement 2014 : résultats sur un territoire, bases de données et fichiers détail. https://www.insee.fr/fr/information/2867866 (accessed on 13 June 2018). | |
INSEE. Recensement 2014: résultats sur un territoire, bases de données et fichiers détail. https://www.insee.fr/fr/information/2867866 (accessed on 13 June 2018). | |
Statistisches Landesamt Baden-Württemberg. Unternehmen und Betriebe seit 2006 nach Beschäftigtengrößenklassen: 2014. https://www.statistik-bw.de (accessed on 13 June 2018). | |
Statistisches Landesamt Rheinland-Pfalz. Unternehmen 2015 nach Wirtschaftszweigen und Zahl der sozialversicherungspflichtig Beschäftigten. https://www.statistik.rlp.de (accessed on 13 June 2018). | |
7 | arbeit.swiss. Durchschnittliche Arbeitslosenquote pro Jahr. https://www.amstat.ch/v2/index.jsp (accessed on 13 June 2018). |
INSEE. Démographie des entreprises et des établissements pour l’année 2015: Répertoire des entreprises et des établissements (REE)—Fichiers détail. https://www.insee.fr/fr/statistiques/2985296 (accessed on 13 June 2018). | |
Statistische Ämter des Bundes und der Länder, Deutschland. Arbeitsmarktstatistik der Bundesagentur für Arbeit. https://www.statistikportal.de/ (accessed on 13 June 2018). | |
Table 4 | |
8 | GeoRhena. catalogue. https://sdi.georhena.eu/geonetwork/srv/fre/catalog.search#/home (accessed on 12 June 2018). |
LUBW. Überflutungsflächen. http://udo.lubw.baden-wuerttemberg.de/public/q/bHqz1 (accessed on 11 June 2018). | |
Ministerium für Umwelt, Energie, Ernährung und Forsten, Rheinland-Pfalz. Risikokarte HQ10, HQ100, HQextrem. http://www.gdawasser.rlp.de/GDAWasser/client/gisclient/index.html (accessed on 11 June 2018). | |
Amt für Geoinformation. Fließtiefenkarte HQ 30/100/300/extrem. https://www.geo.bl.ch/geoshop/ (accessed on 11 June 2018). | |
Amt für Geoinformation. Fließtiefenkarte HQ 30/100/300/extrem. https://geoweb.so.ch/geodaten/index.php (accessed on 11 June 2018). | |
Kanton Aargau. Fließtiefenkarte HQ 30/100/300/extrem. https://www.ag.ch/geoportal/geodatenshop/datensuche.aspx. (accessed on 11 June 2018). | |
Kanton Basel-Stadt. Fließtiefenkarte HQ 30/100/300/extrem. http://shop.geo.bs.ch/geoshop_app/geoshop/ (accessed on 11 June 2018). |
References
- European Environment Agency. Climate Change, Impacts and Vulnerability in Europe 2016. An Indicator-Based Report; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Himmelsbach, I.; Glaser, R.; Schoenbein, J.; Riemann, D.; Martin, B. Reconstruction of flood events based on documentary data and transnational flood risk analysis of the upper Rhine and its French and German tributaries since AD 1480. Hydrol. Earth Syst. Sci. 2015, 19, 4149–4164. [Google Scholar] [CrossRef] [Green Version]
- Giacona, F.; Martin, B.; Furst, B.; Glaser, R.; Eckert, N.; Himmelsbach, I.; Edelblutte, C.h. Improving the understanding of flood risk in the Alsatian region by knowledge capitalization: The ORRION participative observatory. Natural Hazards Earth Syst. Sci. 2019, 19, 1653–1683. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007-Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M., Canziani, O., Palutikof, J., van der Linden, P., Hanson, C., Eds.; 1. publ; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0521-70597-4. [Google Scholar]
- Regional and Local Adaptation in the EU since the Adoption of the EU Adaptation Strategy in 2013. Available online: https://op.europa.eu/en/publication-detail/-/publication/5a7fd5e0-9c51-11e6-868c-01aa75ed71a1/language-en (accessed on 17 June 2020).
- Van den Hurk, B.; Hewitt, C.; Jacob, D.; Bessembinder, J.; Doblas-Reyes, F.; Döscher, R. The match between climate services demands and Earth System Models supplies. Clim. Serv. 2018, 12, 59–63. [Google Scholar] [CrossRef]
- ESPON Climate. Climate Change and Territorial Effects on Regions and Local Economies; Final Report Version 31/05/2011, Main Report; ESPON & IRPUD; TU Dortmund: Dortmund, Germany, 2011. [Google Scholar]
- Vulnerabilität Deutschlands gegenüber dem Klimawandel. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/climate_change_24_2015_vulnerabilitaet_deutschlands_gegenueber_dem_klimawandel_1.pdf (accessed on 17 June 2020).
- Strategie zur Anpassung an den Klimawandel in Baden-Württemberg. Vulnerabilitäten und Anpassungsmaßnahmen in relevanten Handlungsfeldern. Available online: https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/4_Klima/Klimawandel/Anpassungsstrategie.pdf (accessed on 17 June 2020).
- Analyse klimabedingter Risiken und Chancen in der Schweiz: Regionale Fallstudie Kanton Basel-Stadt. Available online: https://www.nccs.admin.ch/nccs/de/home/regionen/kantone/basel-stadt.html (accessed on 19 February 2020).
- Plan Climat 2030, Version Avril 2019. Available online: https://www.strasbourg.eu/plan-climat-2030 (accessed on 19 February 2020).
- Deutsch-Französisch-Schweizerische Oberrheinkonferenz. Oberrhein/Rhin-Supérieur. Daten und Fakten/Faits et Chiffres; Statistische Ämter am Oberrhein/Offices statistiques du Rhin Supérieur, Ed.; Deutsch-Französisch-Schweizerische Oberrheinkonferenz: Kehl, Germany, 2018. [Google Scholar]
- According to land use data provided by CORINE Landcover. Available online: https://sdi.georhena.eu/mapfishapp/map/72ba7b3281d9fda4b303ae9ee2f00d2e (accessed on 4 April 2020).
- Haarich, S.; Hans, S.; Corbineau, C.; Schibler, J.; Brouwer, J.; Deelstra, J. ANALYSE DES PROGRAMMGEBIETS INTERREG V OBERRHEIN. Endbericht. Interreg Programme RHIN SUPERIEUR, Managing Authority REGION GRAND EST STRASBOURG, 11.06.2019. Available online: https://www.interreg-oberrhein.eu/wp-content/uploads/3-analyse-des-programmgebiets.pdf (accessed on 4 April 2020).
- Glaser, R. Klimageschichte Mitteleuropas–1200 Jahre Wetter, Klima, Katastrophen, 3rd ed.; WBG: Darmstadt, Germany, 2013. [Google Scholar]
- Ouzeau, G.; Déqué, M.; Jouini, M.; Planton, S.; Vautard, R. Le climat de la France au XXIe siècle; Scénarios régionalisés: Édition pour la métropole et les régions d’outre-mer. Available online: https://www.ecologique-solidaire.gouv.fr/sites/default/files/ONERC_Climat_France_XXI_Volume_4_VF.pdf (accessed on 4 April 2020).
- Parlow, E.; Scherer, D.; Fehrenbach, U. Regionale Klimaanalyse Südlicher Oberrhein (REKLISO); Regionalverband Südlicher Oberrhein: Freiburg, Germany, 2006. [Google Scholar]
- Scherrer, S.C.; Fischer, E.M.; Posselt, R.; Liniger, M.A.; Croci-Maspoli, M.; Knutti, R. Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J. Geophys. Res. Atmos. 2016, 121, 2626–2637. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.G.; Reyers, M. Winde und Zyklonen. In Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und Perspektiven; Brasseur, G.P., Jacob, D., Schuck-Zöller, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 67–75. ISBN 978-3-662-50396-6. [Google Scholar]
- Erfurt, M.; Glaser, R.; Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg Environ. Chang. 2019, 19, 2311–2323. [Google Scholar] [CrossRef] [Green Version]
- Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. In Proceedings of the World Conference on Disaster Reduction, Kobe, Hyogo, Japan, 18–22 January 2005; Available online: https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf (accessed on 4 June 2020).
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; SREX; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., Tignor, M., Midgley, P.M., Eds.; Cambridge University Press: New York, NY, USA, 2012; ISBN 978-1-107-02506-6. [Google Scholar]
- Füssel, H.-M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Bohle, H.G.; Glade, T. Vulnerabilitätskonzepte in Sozial- und Naturwissenschaften. In Naturrisiken und Sozialkatastrophen; Felgentreff, C., Glade, T., Eds.; Spektrum Akad. Verl: Berlin, Germany, 2008; ISBN 978-3-8274-1571-4. [Google Scholar]
- Weichselgartner, J. Vulnerability as a concept in science and practice. In Atlas Vulnerability and Resilience/Atlas Verwundbarkeit und Resilienz; Pigeon, P., Fekete, A., Hufschmidt, G., Eds.; TH Köln and Universität Bonn: Cologne and Bonn, Germany, 2016; pp. 18–21. [Google Scholar]
- Birkmann, J.; Greiving, S.; Serdeczny, O. Das Assessment von Vulnerabilitäten, Risiken und Unsicherheiten. In Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven; Brasseur, G., Jacob, D., Schuck-Zöller, S., Eds.; Springer Spektrum: Hamburg, Germany, 2017; pp. 267–276. [Google Scholar]
- Schneiderbauer, S.; Calliari, E.; Eidsvig, U.; Hagenlocher, M. The most recent view of vulnerability. In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Poljanšek, K., Marin Ferrer, M., de Groeve, T., Clark, I., Eds.; European Commission: Brussels, Belgium, 2017; pp. 68–82. ISBN 978-92-79-60679-3. [Google Scholar]
- Buth, M.; Kahlenborn, W.; Greiving, S.; Fleischhauer, M.; Zebisch, M.; Schneiderbauer, S.; Schauser, I. Leitfaden für Klimawirkungs- und Vulnerabilitätsanalysen. Empfehlungen der Interministeriellen Arbeitsgruppe Anpassung an den Klimawandel der Bundesregierung; Umweltbundesamt: Dessau-Roßlau, Germany, 2017; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/uba_2017_leitfaden_klimawirkungs_und_vulnerabilitatsanalysen.pdf (accessed on 4 June 2020).
- Füssel, H.-M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Chang. 2007, 17, 155–167. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014. Impacts, Adaptation, and Vulnerability: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L., Eds.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-64165-5. [Google Scholar]
- Schneiderbauer, S.; Zebisch, M.; Kass, S.; Pedoth, L. Assessment of vulnerability to natural hazards and climate change in mountain environments. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan, 2013; pp. 349–380. ISBN 978-92-808-1202-2. [Google Scholar]
- Verburg, P.-H.; de Groot, W.-T.; Veldkamp, A.-J. Methodology for multi-scale land-use change modelling: Concepts and challenges. Global Environmental Change and Land Use; Dolman, A.-J., Verhagen, A., Rovers, C.-A., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 17–51. [Google Scholar]
- Reid, L.; Sutton, P.; Hunter, C. Theorizing the meso level: The household as a crucible of pro-environmental behaviour. Prog. Hum. Geogr. 2010, 34, 309–327. [Google Scholar] [CrossRef]
- Hung, L.-S.; Wang, C.; Yarnal, B. Vulnerability of families and households to natural hazards: A case study of storm surge flooding in Sarasota County, Florida. Appl. Geogr. 2016, 76, 184–197. [Google Scholar] [CrossRef]
- Birkmann, J. Data, indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan, 2013; pp. 80–102. ISBN 978-92-808-1202-2. [Google Scholar]
- Fritzsche, K.; Schneiderbauer, S.; Bubeck, P.; Kienberger, S.; Buth, M.; Zebisch, M.; Kahlenborn, W. The Vulnerability Sourcebook: Concept and Guidelines for Standardised Vulnerability Assessments; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn and Eschborn. 2014. Available online: https://www.adaptationcommunity.net/?wpfb_dl=203 (accessed on 4 June 2020).
- Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Clim. Chang. 2016, 136, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Averbeck, P.; Frör, O.; Gartiser, N.; Lützel, N.; Rudolf, F. Climate change preparedness of enterprises in the Upper Rhine region from a business perspective—A multidisciplinary, transboundary analysis. In NachhaltigkeitsManagementForum|Sustainability Management Forum; Springer: Berlin/Heidelberg, Germany, 2019; Volume 27, pp. 83–93. [Google Scholar] [CrossRef] [Green Version]
- Scholze, N.; Glaser, R.; Roy, S. Klimavulnerabilität von Unternehmen in der Metropolregion Oberrhein und ihre Visualisierung anhand von Wirkpfaden. Revue d`Allemagne et des Pays de Langue Allemande 2018, 50, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Definition of Indicandum (German): “Ein Indikandum ist der Tatbestand, der in seiner Entwicklung im Zeitablauf mit Indikatoren abgebildet wird […].” In: Glossar zu Umwelt- und Nachhaltigkeitsindikatoren, Statistisches Bundesamt, Ed., IVB 3. Available online: https://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/csd_04.pdf (accessed on 20 March 2020).
- Müller, F.; Wiggering, H. Umweltziele und Indikatoren. Wissenschaftliche Anforderungen an ihre Festlegung und Fallbeispiele; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Riach, N. Development of a GIS-based Data Infrastructure for the Assessment of Climate Vulnerability in the Trinational Metropolitan Region Upper Rhine Valley. Master’s Thesis, Albert-Ludwigs-University Freiburg, Breisgau, Germany, 2018. [Google Scholar]
- Jenks, G.F.; Caspall, F.C. Error on Choroplethic Maps: Definition, Measurement, Reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Riach, N.; Scholze, N.; Glaser, R. Mapping Climate Change Impacts: The case study of the Trinational Metropolitan Area Upper Rhine. 2020; (unpublished, manuscript in prep.). [Google Scholar]
- Copernicus Programme (Ed.) Corine Land Cover (CLC) 2012, Version 18.5.1. 2016. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 12 January 2020).
- Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Nat. Hazards 2016, 82, 175–192. [Google Scholar] [CrossRef] [Green Version]
- National Strategy for the Protection of Critical Infrastructures (KRITIS-Strategie). Federal Ministry of the Interior, Eds. 17.06.2009. Available online: https://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Downloads/Kritis/CI_Sectors_Subsectors.pdf?__blob=publicationFile (accessed on 26 March 2020).
- GeoRhena. Available online: https://www.georhena.eu/de/GeoRhena_DE (accessed on 26 March 2020).
- Cardona, O.D.; van Aalst, M.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.; Schipper, E.L.F.; Sinh, B.T. Determinants of Risk: Exposure and Vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, SREX, 1st ed; IPCC, Ed.; Cambridge University Press: New York, NY, USA, 2012; pp. 65–108. ISBN 978-1-107-02506-6. [Google Scholar]
- Crichton, D. Climate Change and Its Effects on Small Businesses in the UK; AXA Insurance UK: London, UK, 2006. [Google Scholar]
- Wedawatta, G.; Ingirige, B.; Jones, K. Climate Change and Construction Sector SMEs: Vulnerability, Consequences and Resilience. In Proceedings of the 8th Workshop and Meeting of the CIB W108 – Climate Change and the Built Environment, Politecnico di Milano, Milano, Italy, 12–16 March 2009; Gattoni, L.P., Poli, T., Paolini, R., Eds.; Available online: https://www.researchgate.net/publication/303497992_Climate_Change_and_Construction_Sector_SMEs_Vulnerability_Consequences_and_Resilience (accessed on 4 June 2020).
- KLIWA: Klimawandel in Süddeutschland-Veränderungen von Meteorologischen und Hydrologischen Kenngrößen. Klimamonitoring im Rahmen der Kooperation KLIWA. Monitoringbericht 2016. Available online: https://www.kliwa.de/_download/KLIWA_Monitoringbericht_2016.pdf (accessed on 1 April 2020).
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Greiving, S. Multi-risk and vulnerability assessment of Europe's regions. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan, 2013; pp. 277–550. ISBN 978-92-808-1202-2. [Google Scholar]
- cf. a tweet of climatologist Glen Peters in which he updates a figure on observed global GHG emissions and assumed emissions in various scenarios. Available online: https://twitter.com/Peters_Glen/status/1160518968169390080 (accessed on 10 April 2020). Original article: Peters, G.; Andrew, R.; Boden, T. et al. The challenge to keep global warming below 2 °C. Nat. Clim. Chang. 2013, 3, 4–6. [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions – the ’business as usual’ story is misleading. Comment - Setting the agenda in research. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Remark of Climatologist and Sustainability Researcher Detlef van Vuuren on the Website Carbonbrief.org. Available online: https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario (accessed on 10 April 2020).
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Fekete, A.; Damm, M.; Birkmann, J. Scales as a challenge for vulnerability assessment. Nat. Hazards 2010, 55, 729–747. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.W.; Tompkins, E.L. Adapting to climate change: Perspectives across scales. Glob. Environ. Chang. 2005, 15, 75–76. [Google Scholar] [CrossRef]
- Preston, B.L.; Yuen, E.J.; Westaway, R.M. Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustain. Sci. 2011, 6, 177–202. [Google Scholar] [CrossRef]
- EU Flood directive, (German version). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ%3AL%3A2007%3A288%3A0027%3A0034%3Ade%3APDF (accessed on 1 April 2020).
- Kriegler, E.; O’Neill, B.C.; Hallegatte, S.; Kram, T.; Lempert, R.J.; Moss, R.H.; Wilbanks, T. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob. Environ. Chang. 2012, 22, 807–822. [Google Scholar] [CrossRef]
- Birkmann, J.; Mechler, R. Advancing climate adaptation and risk management. New insights, concepts and approaches: What have we learned from the SREX and the AR5 processes? Clim. Chang. 2015, 133, 1–6. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Riahi, K.; Calvin, K.; Dellink, R.; Emmerling, J.; Fujimori, S.; KC, S.; Kriegler, E.; O’Neill, B. The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. Glob. Environ. Chang. 2017, 42, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Bijak, J.; Migration Forecasting: Beyond the limits of uncertainty. Global Migration Data Analysis Centre, Data Briefing Series, 2016, 6. Available online: https://publications.iom.int/system/files/gmdac_data_briefing_series_issue_6.pdf (accessed on 1 June 2020).
- For Instance, the German Federal State of Baden-Württemberg Provides Population Forecasts on the District Level only until 2035. Projections. Available online: https://www.statistik-bw.de/BevoelkGebiet/Vorausrechnung/Kreisdaten.jsp (accessed on 28 May 2020).
- Cutter, S.; Osman-Elasha, B.; Campbell, J.; Cheong, S.-M.; McCormick, S.; Pulwarty, R.; Supratid, S.; Ziervogel, G. Managing the Risks from Climate Extremes at the Local Level. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change SREX, 1st ed; IPCC, Ed.; Cambridge University Press: New York, NY, USA, 2012; pp. 291–338. ISBN 978-1-107-02506-6. [Google Scholar]
- Ford, J.D.; Knight, M.; Pearce, T. Assessing the ‘usability’of climate change research for decision-making: A case study of the Canadian International Polar Year. Glob. Environ. Chang. 2013, 23, 1317–1326. [Google Scholar] [CrossRef]
- Fancy, S.G.; Gross, J.E.; Carter, S.L. Monitoring the condition of natural resources in US national parks. Environ. Monit. Assess. 2009, 151, 161–174. [Google Scholar] [CrossRef]
- Magnan, A.K.; Schipper, E.L.F.; Burkett, M.; Bharwani, S.; BURTON, I.; Eriksen, S.; Gemenne, F.; Schaar, J.; Ziervogel, G. Addressing the risk of maladaptation to climate change. WIREs Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- The Upper Rhine Climate Inspector. Available online: https://gis.clim-ability.eu/ (accessed on 4 June 2020).
Indicator | Indicandum | Description | Resolution |
---|---|---|---|
Climatic Stressor | Change of climatic stress situations | ||
Tropical Nights 1 | Heat stress, lack of nocturnal cooling | nights/year with a minimum temperature > 20 °C | ca. 12.5 × 12.5 km |
Summer Days 1 | Heat stress, oppressive humidity, cooling energy demand | days/year with a maximum temperature > 25 °C | ca. 12.5 × 12.5 km |
Frost Days 1 | Decrease of snow cover | days/year with a minimum temperature < 0 °C | ca. 12.5 × 12.5 km |
Winter Precipitation 1 | Flood risk in winter months | change of mean precipitation in December, January and February in % | ca. 12.5 × 12.5 km |
Summer Precipitation 1 | Summer drought risk, low-water, water shortages | change of mean precipitation in June, July and August in % | ca. 12.5 × 12.5 km |
Heavy Precipitation 1 | Damages caused by heavy rain and subsequent flooding | days/year with a precipitation > 20 mm | ca. 12.5 × 12.5 km |
Consecutive Dry Day Periods 1 | Drought risk, low-water, water shortages | days with less than 1 mm precipitation in dry periods of at least five days | ca. 12.5 × 12.5 km |
Exposure Indicator | Indicandum | Description | Resolution |
---|---|---|---|
Built-up areas 2 | Location of exposed enterprises and population | built-up area in % per community | community level |
Critical Infrastructure 3 | Location of exposed critical infrastructure | incl. roads, cross-border bridges, railway lines, stations, airports, hospitals, power lines, power pylons, power towers, substations, power plants and generators | 100 m |
Sensitivity Indicator | Indicandum | Description | Resolution |
---|---|---|---|
Population density 4 | Density of the potentially affected population | per km² | community level |
Population between 15–65 years 4 | Share of the population at working age | percentage of total population | community level |
Business tax 5 | Economic importance of a community | in €, without Switzerland | community level |
SME employment rate 6 | SMEs are more sensitive due to reduced financial resources | percentage of employees in enterprises < 200 (F) or < 250 employees (D + CH) | community level (F, CH) / NUTS 3 (D) |
Unemployment rate 7 | Economic situation of a community | percentage per community | community level (F), NUTS 3 (D + CH) |
Impact Indicator | Indicandum | Description | Resolution |
---|---|---|---|
Flood affected communities 8 | flood prone areas in a 100-year-event | percentage of total community area | officially defined flood areas |
Flood affected population 9 | Resident population in flood prone areas (100-year-event) | percentage of affected population per community | 1 km |
Flood affected built-up areas 2+8 | Built-up areas in flood prone areas (100-year-event) | percentage of affected area per community | 100 m |
Flood affected critical infrastructure 3+8 | Critical infrastructure in flood prone areas (100-year-event) | percentage of affected critical infrastructure per community | 100 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholze, N.; Riach, N.; Glaser, R. Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach? Sustainability 2020, 12, 6323. https://doi.org/10.3390/su12166323
Scholze N, Riach N, Glaser R. Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach? Sustainability. 2020; 12(16):6323. https://doi.org/10.3390/su12166323
Chicago/Turabian StyleScholze, Nicolas, Nils Riach, and Rüdiger Glaser. 2020. "Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach?" Sustainability 12, no. 16: 6323. https://doi.org/10.3390/su12166323
APA StyleScholze, N., Riach, N., & Glaser, R. (2020). Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach? Sustainability, 12(16), 6323. https://doi.org/10.3390/su12166323