Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Methodology
2.1.1. Spatial Distribution of the Shelter Demand and Resources
2.1.2. Spatial Accessibility Estimation
2.1.3. Shelter Demand Estimation and Deficiency Assessment
2.1.4. Vulnerability Analysis
2.2. Case Study Area
2.3. Data Collection
2.3.1. GIS-Related Data
2.3.2. Data Related to Disaster Preparation
3. Results
3.1. Spatial Distribution
3.2. Accessibility Assessment
3.3. Capacity Assessment
3.4. Vulnerability of Shelters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosselló, J.; Becken, S.; Santana-Gallego, M. The effects of natural disasters on international tourism: A global analysis. Tour. Manag. 2020, 79, 104080. [Google Scholar] [CrossRef]
- Jha, A.; Brecht, H.; Stanton-Geddes, Z. Building resilience to disasters and climate change in the age of urbanization. In Disaster Risk Reduction for Economic Growth and Livelihood: Investing in Resilience and Development; Davis, I., Yanagisawa, K., Georgieva, K., Eds.; Routledge: Abingdon, UK, 2015; pp. 7–27. [Google Scholar]
- EM-DAT: The International Disaster Database. Available online: https://public.emdat.be/ (accessed on 9 June 2020).
- Djalante, R. Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction. Prog. Disaster Sci. 2019, 1, 100001. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR) Home Page. Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction. Available online: https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf (accessed on 5 January 2020).
- Birkmann, J. Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. Inst. Environ. Hum. Secur. J. 2006, 5, 7–54. [Google Scholar]
- Zhao, L.; Li, H.; Sun, Y.; Huang, R.; Hu, Q.; Wang, J.; Gao, F. Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach. Sustainability 2017, 9, 2098. [Google Scholar] [CrossRef] [Green Version]
- Dostal, P.J. Vulnerability of Urban Homebound Older Adults in Disasters: A Survey of Evacuation Preparedness. Disaster Med. Public Health Prep. 2015, 9, 301–306. [Google Scholar] [CrossRef]
- Cruz, M.A.; Rubens, M.; Garcia, S.J.; Malilay, J.; Levin, K.L.; Williams, O.D. Knowledge of and Preparedness for Use of Environmental Assessments in Shelters during Disasters: Results of the 2013 State and Territorial Use of Shelter Assessments Survey. Disaster Med. Public Health Prep. 2017, 11, 11–14. [Google Scholar] [CrossRef]
- Bashawri, A.; Garrity, S.; Moodley, K. An Overview of the Design of Disaster Relief Shelters. Procedia Econ. Financ. 2014, 18, 924–931. [Google Scholar] [CrossRef] [Green Version]
- United Nations Office for Disaster Risk Reduction (UNDRR) Home Page. Lesson Learned and Way forward for Resilient Shelter Interventions in Rural Myanmar. Available online: https://www.preventionweb.net/files/19769_unhabitatpostnargisinterventionless.pdf (accessed on 20 January 2020).
- Kotani, H.; Yokomatsu, M.; Ito, H. Potential of a shopping street to serve as a food distribution center and an evacuation shelter during disasters: Case study of Kobe, Japan. Int. J. Disaster Risk Reduct. 2020, 44, 101286. [Google Scholar] [CrossRef]
- Pimanmas, A.; Joyklad, P.; Warnitchai, P. Structural design guideline for tsunami evacuation shelter. J. Earthq. Tsunami 2011, 4, 269–284. [Google Scholar] [CrossRef]
- Isahak, A.; Reza, M.I.H.; Siwar, C.; Ismail, S.M.; Sulaiman, N.; Hanafi, Z.; Zainuddin, M.S.; Taha, M.R. Delineating risk zones and evaluation of shelter centres for flood disaster management along the Pahang River Basin, Malaysia. Jamba 2018, 10, 501. [Google Scholar] [CrossRef]
- Gao, J.; He, J.; Gong, J. A simplified method to provide evacuation guidance in a multi-exit building under emergency. Phys. A Stat. Mech. Appl. 2020, 545, 123554. [Google Scholar] [CrossRef]
- Kar, B.; Hodgson, M.E. A GIS-Based Model to Determine Site Suitability of Emergency Evacuation Shelters. Trans. GIS 2008, 12, 227–248. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, W.; Qin, L.; Zhao, X. Site Selection Models in Natural Disaster Shelters: A Review. Sustainability 2019, 11, 399. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.-S.; Ou, Y.-C.; Cheng, M.-Y.; Cheng, M.-Y.; Lee, C.-M. Emergency shelter capacity estimation by earthquake damage analysis. Nat. Hazards 2013, 65, 2031–2061. [Google Scholar] [CrossRef]
- Nguyen, D.-T.; Shen, Z.; Honda, K.; Sugihara, K.; Nishino, T.; Truong, M.-H. A GIS-Based Model for Integrating Risk Estimations of Residential Building Damage and Shelter Capacity in the Case of Earthquakes. Nat. Hazards Rev. 2020, 21, 04019016. [Google Scholar] [CrossRef]
- Karaye, I.M.; Thompson, C.; Horney, J.A. Evacuation Shelter Deficits for Socially Vulnerable Texas Residents during Hurricane Harvey. Health Serv. Res. Manag. Epidemiol. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Karaye, I.M.; Thompson, C.; Perez-Patron, M.; Taylor, N.; Horney, J.A. Estimating Evacuation Shelter Deficits in the Houston-Galveston Metropolitan Area. Risk Anal. 2020, 40, 1079–1091. [Google Scholar] [CrossRef]
- Baker, E.J. Hurricane evacuation behavior. Int. J. Mass Emergencies Disasters 1991, 9, 287–310. [Google Scholar]
- Yu, J.; Wen, J. Multi-criteria Satisfaction Assessment of the Spatial Distribution of Urban Emergency Shelters Based on High-Precision Population Estimation. Int. J. Disaster Risk Sci. 2016, 7, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Wang, J.; Huang, J.; Xu, S.; Chen, Z. Methodology and its application for community-scale evacuation planning against earthquake disaster. Nat. Hazards 2012, 61, 881–892. [Google Scholar] [CrossRef]
- Li, X.; Claramunt, C.; Kung, H.; Guo, Z.; Wu, J. A decentralized and continuity-based algorithm for delineating capacitated shelters’ service areas. Environ. Plan. B Plan. Des. 2008, 35, 593–608. [Google Scholar] [CrossRef]
- Ünal, M.; Uslu, C. Gis-Based Accessibility Analysis of Urban Emergency Shelters: The Case of Adana City. Isprs—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W1, 95–101. [Google Scholar]
- Parvin, G.A.; Sakamoto, M.; Shaw, R.; Nakagawa, H.; Sadik, M.S. Evacuation scenarios of cyclone Aila in Bangladesh: Investigating the factors influencing evacuation decision and destination. Prog. Disaster Sci. 2019, 2, 100032. [Google Scholar] [CrossRef]
- Abioye, O.F.; Dulebenets, M.A.; Ozguven, E.E.; Moses, R.; Boot, W.R.; Sando, T. Assessing perceived driving difficulties under emergency evacuation for vulnerable population groups. Socio-Econ. Plan. Sci. 2020. [Google Scholar] [CrossRef]
- Santos-Reyes, J. Factors motivating Mexico City residents to earthquake mass evacuation drills. Int. J. Disaster Risk Reduct. 2020, 49, 101661. [Google Scholar] [CrossRef]
- Horner, M.W.; Ozguven, E.E.; Marcelin, J.M.; Kocatepe, A. Special needs hurricane shelters and the ageing population: Development of a methodology and a case study application. Disasters 2018, 42, 169–186. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Edwards, B.; Van Willigen, M.; Maiolo, J.R.; Wilson, K.; Smith, K.T. Heading for higher ground: Factors affecting real and hypothetical hurricane evacuation behavior. Glob. Environ. Chang. Part B Environ. Hazards 2000, 2, 133–142. [Google Scholar] [CrossRef]
- Bateman, J.M.; Edwards, B. Gender and Evacuation: A Closer Look at Why Women Are More Likely to Evacuate for Hurricanes. Nat. Hazards Rev. 2002, 3, 107–117. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Chen, X.; Zhang, G.; Ma, D. Tsunami-induced traffic evacuation strategy optimization. Transp. Res. Part D Transp. Environ. 2019, 77, 535–559. [Google Scholar] [CrossRef]
- Zhang, W.; Yun, Y. Multi-scale accessibility performance of shelters types with diversity layout in coastal port cities: A case study in Nagoya City, Japan. Habitat Int. 2019, 83, 55–64. [Google Scholar] [CrossRef]
- Faruk, M.; Ashraf, S.A.; Ferdaus, M. An analysis of inclusiveness and accessibility of Cyclone Shelters, Bangladesh. Procedia Eng. 2018, 212, 1099–1106. [Google Scholar] [CrossRef]
- Requia, W.J.; Koutrakis, P.; Arain, A. Modeling spatial distribution of population for environmental epidemiological studies: Comparing the exposure estimates using choropleth versus dasymetric mapping. Environ. Int. 2018, 119, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.R. The concept of accessibility: A search for an operational form. Reg. Stud. 1971, 5, 101–107. [Google Scholar] [CrossRef]
- Ashik, F.R.; Mim, S.A.; Neema, M.N. Towards vertical spatial equity of urban facilities: An integration of spatial and aspatial accessibility. J. Urban Manag. 2020, 9, 77–92. [Google Scholar] [CrossRef]
- Evacuation and Shelter Guidance. Available online: https://www.iaem.org/portals/25/documents/UKEvacuation-ShelterGuidance1.pdf (accessed on 5 January 2020).
- FEMA: Official Website of United States Government. Planning Considerations: Evacuation and Shelter-in-Place, Guidance for State, Local, Tribal, and Territorial Partners. Available online: https://www.fema.gov/media-library-data/1564165488078-09ab4aac641f77fe7b7dd30bad21526b/Planning_Considerations_Evacuation_and_Shelter-in-Place.pdf (accessed on 22 January 2020).
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Masuya, A.; Dewan, A.; Corner, R.J. Population evacuation: Evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems. Nat. Hazards 2015, 78, 1859–1882. [Google Scholar] [CrossRef]
- Wood, N.; Jones, J.; Peters, J.; Richards, K. Pedestrian evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawaiʻi. Int. J. Disaster Risk Reduct. 2018, 28, 271–283. [Google Scholar] [CrossRef]
- Nakanishi, H.; Black, J.; Suenaga, Y. Investigating the flood evacuation behaviour of older people: A case study of a rural town in Japan. Res. Transp. Bus. Manag. 2019, 30, 100376. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR) Home page. Flood Hazard Map Manual for Technology Transfer. Available online: https://www.preventionweb.net/files/2708_FHMManual.pdf (accessed on 10 March 2019).
- Fuchs, S.; Heiss, K.; Hübl, J. Towards an empirical vulnerability function for use in debris flow risk assessment. Nat. Hazards Earth Syst. Sci. 2007, 7, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Wilbanks, T.J. Integrating climate change and sustainable development in a place-based context. Clim. Policy 2003, 3, S147–S154. [Google Scholar] [CrossRef]
- Cardona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T. Determinants of Risk: Exposure and Vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar]
- Emrich, C.; Cutter, S. Social Vulnerability to Climate-Sensitive Hazards in the Southern United States. Weather Clim. Soc. 2011, 3, 193–208. [Google Scholar] [CrossRef]
- Bandaru, S.; Sano, S.; Shimizu, Y.; Seki, Y.; Okano, Y.; Sasaki, T.; Wada, H.; Otsuki, T.; Ito, T. Impact of heavy rains of 2018 in western Japan: Disaster-induced health outcomes among the population of Innoshima Island. Heliyon 2020, 6, e03942. [Google Scholar] [CrossRef] [PubMed]
- Asahi Shimbun Digital Newspaper Home page. 51 Deaths by Heavy Rain, 58 People undiscovered, Evacuation Order for 8.63 Million Residents. Available online: https://www.asahi.com/articles/ASL774QS5L77PTIL01H.html (accessed on 8 July 2018).
- BBC Japan Flood: At Least 179 Dead after Worst Weather in Decades. Available online: https://www.bbc.com/news/world-asia-44790193 (accessed on 5 February 2020).
- Shakti, P.C.; Kamimera, H. Flooding in Oda River Basin during Torrential Rainfall Event in July 2018. Eng. J. 2019, 23, 477–485. [Google Scholar]
- Nihei, Y.; Shinohara, A.; Ohta, K.; Maeno, S.; Akoh, R.; Akamatsu, Y.; Komuro, T.; Kataoka, T.; Onomura, S.; Kaneko, R. Flooding Along Oda River Due to the Western Japan Heavy Rain in 2018. J. Disaster Res. 2019, 14, 874–885. [Google Scholar] [CrossRef]
- Sangita, D. Six Months since Western Japan Floods: Lessons from Mabi; CSW Japan: Tokyo, Japan, 2019; p. 16. [Google Scholar]
- Statistics of Japan, e-Stat: Portal Site of Official Statistics of Japan. Available online: https://www.e-stat.go.jp/gis (accessed on 15 February 2019).
- Kako, M.; Steenkamp, M.; Ryan, B.; Arbon, P.; Takada, Y. Best practice for evacuation centres accommodating vulnerable populations: A literature review. Int. J. Disaster Risk Reduct. 2020, 46, 101497. [Google Scholar] [CrossRef]
- Akiyama, N.; Shiroiwa, T.; Fukuda, T.; Murashima, S.; Hayashida, K. Healthcare costs for the elderly in Japan: Analysis of medical care and long-term care claim records. PLoS ONE 2018, 13, e0190392. [Google Scholar] [CrossRef]
- Data-Cradle Data Eye of Kurashiki. Available online: https://kurashiki.dataeye.jp (accessed on 3 March 2019).
- The Geospatial Information Authority of Japan. Available online: https://maps.gsi.go.jp/ (accessed on 2 April 2019).
- Ye, M.; Aldrich, D.P. Substitute or complement? How social capital, age and socioeconomic status interacted to impact mortality in Japan’s 3/11 tsunami. SSM—Popul. Health 2019, 7, 100403. [Google Scholar] [CrossRef]
- Kojima, G.; Iliffe, S.; Taniguchi, Y.; Shimada, H.; Rakugi, H.; Walters, K. Prevalence of frailty in Japan: A systematic review and meta-analysis. J. Epidemiol. 2017, 27, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Emergency medical services in a hyper-aged society. Nihon Rinsho 2013, 71, 953–963. [Google Scholar]
Shelter ID | Route Name | Population ID | Travel Distance (km) | Walking Duration (min) | Pj,1 |
---|---|---|---|---|---|
1 | 5133756744-1 | 5133756744 | 0.150 | 1.8 | 130 |
1 | 5133756743-1 | 5133756743 | 0.228 | 2.7 | 382 |
1 | 5133756741-1 | 5133756741 | 0.299 | 3.6 | 86 |
1 | 5133757721-1 | 5133757721 | 0.352 | 4.2 | 218 |
Data Information | Source | Data Type | Application |
---|---|---|---|
GIS boundary data | Official statistics of Japan | Shape file | Boundary of study area |
5th-level mesh data | Official statistics of Japan | Shape file | Spatial distribution analysis |
Census data | Official statistics of Japan | CSV file | Spatial distribution analysis |
Designated evacuation sites | Kurashiki City Open Data Portal | CSV file | Shelter deficiency and vulnerability analysis |
Flooding data area in 2018 | Geospatial Information Authority of Japan | - | Reference for disaster events data |
Mabi Town Information | Amount | The Ratio (of the Total Population) |
---|---|---|
Shape area (km2) | 44.12 | - |
Total population | 22,594 | - |
Male | 10,962 | 48.52 |
Female | 11,632 | 51.48 |
Total population over 65 years old | 7157 | 31.68 |
Male | 3264 | 14.45 |
Female | 3893 | 17.23 |
Total population over 75 years old | 2950 | 13.06 |
Male | 1221 | 5.40 |
Female | 1729 | 7.65 |
Total capacity of designated shelters | 3110 | 13.76 |
Shelter Number | Number of Accessed Area | Closest Distance (km) | Fastest Duration (min) | Longest Distance (km) | Longest Duration (min) |
---|---|---|---|---|---|
1 | 13 | 0.150 | 1.798 | 1.398 | 16.779 |
2 | 12 | 0.345 | 4.138 | 1.323 | 15.870 |
3 | 16 | 0.130 | 1.562 | 1.574 | 18.891 |
4 | 2 | 0.472 | 5.659 | 0.856 | 10.277 |
5 | 18 | 0.033 | 0.391 | 1.407 | 16.888 |
6 | 15 | 0.059 | 0.714 | 1.418 | 17.018 |
7 | 3 | 0.004 | 0.042 | 0.430 | 5.163 |
8 | 14 | 0.296 | 3.547 | 1.822 | 21.866 |
9 | 6 | 0.666 | 7.990 | 1.219 | 14.633 |
10 | 28 | 0.149 | 1.784 | 1.851 | 22.215 |
11 | 13 | 0.187 | 2.238 | 1.803 | 21.639 |
12 | 7 | 0.269 | 3.230 | 0.935 | 11.223 |
13 | 17 | 0.131 | 1.573 | 0.939 | 11.265 |
14 | 29 | 0.164 | 1.969 | 1.991 | 23.888 |
15 | 10 | 0.020 | 0.235 | 1.462 | 17.542 |
16 | 9 | 0.197 | 2.367 | 1.281 | 15.370 |
17 | 27 | 0.252 | 3.029 | 1.889 | 22.674 |
18 | 10 | 0.288 | 3.453 | 1.654 | 19.851 |
19 | 25 | 0.038 | 0.452 | 1.399 | 16.791 |
20 | 11 | 0.250 | 3.001 | 1.281 | 15.374 |
21 | 6 | 0.297 | 3.561 | 1.577 | 18.926 |
22 | 12 | 0.010 | 0.125 | 1.774 | 21.291 |
Shelter Number | Shelter Capacity | Number of Accessed Area | Di | Ri | Di,O65 |
---|---|---|---|---|---|
1 | 160 | 13 | 2116 | 8% | 509 |
2 | 180 | 12 | 1302 | 14% | 388 |
3 | 300 | 16 | 1918 | 16% | 510 |
4 | 180 | 2 | 40 | 450% | 18 |
5 | 180 | 18 | 1633 | 11% | 447 |
6 | 280 | 15 | 1232 | 23% | 352 |
7 | 210 | 3 | 555 | 38% | 238 |
8 | 270 | 14 | 296 | 91% | 104 |
9 | 160 | 6 | 969 | 17% | 424 |
10 | 160 | 28 | 711 | 23% | 275 |
11 | 70 | 13 | 1463 | 5% | 421 |
12 | 50 | 7 | 912 | 5% | 353 |
13 | 30 | 17 | 1561 | 2% | 560 |
14 | 40 | 29 | 1368 | 3% | 423 |
15 | 140 | 10 | 665 | 21% | 233 |
16 | 40 | 9 | 1283 | 3% | 333 |
17 | 80 | 27 | 896 | 9% | 318 |
18 | 50 | 10 | 456 | 11% | 147 |
19 | 30 | 25 | 659 | 5% | 240 |
20 | 340 | 11 | 1074 | 32% | 341 |
21 | 140 | 6 | 385 | 36% | 128 |
22 | 20 | 12 | 353 | 6% | 122 |
ShelterNumber | Shelter Capacity | Before Flood | After Flood | ||
---|---|---|---|---|---|
Number of Accessed Area | Number of Accessed Area | ||||
1 | 160 | 13 | 2116 | 0 | 0 |
2 | 180 | 12 | 1302 | 30 | 3057 |
3 | 300 | 16 | 1918 | 0 | 0 |
4 | 180 | 2 | 40 | 2 | 40 |
5 | 180 | 18 | 1633 | 0 | 0 |
6 | 280 | 15 | 1232 | 0 | 0 |
7 | 210 | 3 | 555 | 0 | 0 |
8 | 270 | 14 | 296 | 0 | 0 |
9 | 160 | 6 | 969 | 6 | 969 |
10 | 160 | 28 | 711 | 30 | 775 |
11 | 70 | 13 | 1463 | 0 | 0 |
12 | 50 | 7 | 912 | 0 | 0 |
13 | 30 | 17 | 1561 | 0 | 0 |
14 | 40 | 29 | 1368 | 29 | 1368 |
15 | 140 | 10 | 665 | 12 | 708 |
16 | 40 | 9 | 1283 | 23 | 2860 |
17 | 80 | 27 | 896 | 19 | 632 |
18 | 50 | 10 | 456 | 0 | 0 |
19 | 30 | 25 | 659 | 0 | 0 |
20 | 340 | 11 | 1074 | 17 | 2205 |
21 | 140 | 6 | 385 | 0 | 0 |
22 | 20 | 12 | 353 | 13 | 406 |
Flooded Model Data | Affected Amount | Total Amount | Percentile |
---|---|---|---|
Flooded area (km2) | 13.49 | 44.12 | 31% |
Total flooded population | 13,247 | 22,594 | 59% |
Male | 6400 | 10,962 | 58% |
Female | 6847 | 11,632 | 59% |
Total flooded population over 65 years old | 3976 | 7157 | 56% |
Male | 1828 | 3264 | 56% |
Female | 2148 | 3893 | 55% |
Total flooded population over 75 years old | 1571 | 2950 | 53% |
Male | 678 | 1221 | 56% |
Female | 893 | 1729 | 52% |
Total remaining capacity of designated shelters | 1340 | 3110 | 43% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sritart, H.; Miyazaki, H.; Kanbara, S.; Hara, T. Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning. Sustainability 2020, 12, 7355. https://doi.org/10.3390/su12187355
Sritart H, Miyazaki H, Kanbara S, Hara T. Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning. Sustainability. 2020; 12(18):7355. https://doi.org/10.3390/su12187355
Chicago/Turabian StyleSritart, Hiranya, Hiroyuki Miyazaki, Sakiko Kanbara, and Takashi Hara. 2020. "Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning" Sustainability 12, no. 18: 7355. https://doi.org/10.3390/su12187355
APA StyleSritart, H., Miyazaki, H., Kanbara, S., & Hara, T. (2020). Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning. Sustainability, 12(18), 7355. https://doi.org/10.3390/su12187355