Bacterivorous Nematodes Correlate with Soil Fertility and Improved Crop Production in an Organic Minimum Tillage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Nutrient Analyses
2.2. Biological Assessments
2.3. Greenhouse Study for Fertility Assessments
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Tillage System and Fertilizer Application on Chemical and Biological Soil Properties
3.2. Effects of Tillage System and Fertilizer Application on Pea Performance under Greenhouse Conditions
3.3. Biological Soil Components as Indicators of Soil Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.R.; Silva, E.M.; Peigne, J. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. Sustain. Dev. 2019, 39, 45. [Google Scholar] [CrossRef]
- Finckh, M.R.; van Bruggen, A.H.C. Organic production of annual crops. In Plant Diseases and their Management in Organic Agriculture; Finckh, M.R., van Bruggen, A.H.C., Tamm, L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 25–32. ISBN 978-0-89054-476-1. [Google Scholar]
- Cooper, J.; Baranski, M.; Stewart, G.; Lange, M.N.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Vann, R.A.; Reberg-Horton, S.C.; Poffenbarger, H.J.; Zinati, G.M.; Moyer, J.B.; Mirsky, S.B. Starter fertilizer for managing cover crop-based organic corn. Agron. J. 2017, 109, 2214–2222. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, S.M.; Storch, J.; Finckh, M.R.; Schmidt, J.H. Developing organic minimum tillage farming systems for Central and Northern European conditions. In No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities; Dang, Y.P., Dalal, R.C., Menzies, N.W., Eds.; Springer-Nature: Amsterdam, The Netherlands, 2020; Chapter 11; in press; ISBN 978-3-030-46408-0. [Google Scholar]
- Peigné, J.; Vian, J.-F.; Payet, V.; Saby, N.P.A. Soil fertility after 10 years of conservation tillage in organic farming. Soil Tillage Res. 2018, 175, 194–204. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation tillage issues: Cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Papp, R.; Marinari, S.; Moscatelli, M.C.; van der Heijden, M.G.A.; Wittwer, R.; Campiglia, E.; Radicetti, E.; Mancinelli, R.; Fradgley, N.; Pearce, B.; et al. Short-term changes in soil biochemical properties as affected by subsidiary crop cultivation in four European pedo-climatic zones. Soil Tillage Res. 2018, 180, 126–136. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Junge, S.; Finckh, M.R. Cover crops and compost prevent weed seed bank buildup in herbicide-free wheat–potato rotations under conservation tillage. Ecol. Evol. 2019, 9, 2715–2724. [Google Scholar] [CrossRef]
- Döring, T.F.; Lynch, D.H. Organic potato cultivation. In Achieving Sustainable Cultivation of Potatoes; Wang-Pruski, G., Ed.; Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 89–118. ISBN 978-1-78676-100-2. [Google Scholar]
- Finckh, M.R.; Yli-Mattila, T.; Nykänen, A.; Kurki, P.; Hannukkala, A. Organic temperate legume disease management. In Plant Diseases and their Management in Organic Agriculture; Finckh, M.R., van Bruggen, A.H.C., Tamm, L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 293–310. ISBN 978-0-89054-476-1. [Google Scholar]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—A review. CRC Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- Baćanović-Šišić, J.; Šišić, A.; Schmidt, J.H.; Finckh, M.R. Identification and characterization of pathogens associated with root rot of winter peas grown under organic management in Germany. Eur. J. Plant Pathol. 2018, 151, 745–755. [Google Scholar] [CrossRef]
- Stirling, G.R. Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. In Biological Control of Plant-Parasitic Nematodes; Progress in Biological Control; Davies, K., Spiegel, Y., Eds.; Springer: Amsterdam, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2011; pp. 1–38. ISBN 978-1-4020-9648-8. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 2010, 48, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.H.; Finckh, M.R.; Hallmann, J. Oilseed radish/black oat subsidiary crops can help regulate plant-parasitic nematodes under non-inversion tillage in an organic wheat-potato rotation. Nematology 2017, 19, 1135–1146. [Google Scholar] [CrossRef]
- VDLUFA. Methodenbuch Band I Böden, 4th ed.; VDLUFA: Darmstadt, Germany, 1991; Book 1 A 4.1.3.2: Direct assessment of Corg by burning at 550 °C, Book 1 A 5.1.1: pH in soil-salt (CaCl) solution, Book 1 A 6.2.1.1: Assessment of phosphorous and potassium in an acidic calcium-acetate-lactate- solution (CAL), Book 1 A 6.2.4.1: Extraction of magnesium with CaCl2-solution and subsequent photometric detection, Book 1 A 10.1.1: Calculation of KCl contents after assessment of electric conductivity, DIN EN ISO 17294-2:2017: Determination of copper, zinc and boron in water via inductively-coupled plasma mass spectrometry, DIN EN ISO 11885:2009: Determination of manganese and iron in water via inductively coupled plasma-optical emission spectrometry, and DIN EN 16168:2012: Assessment of Ntoal via dry burning; ISBN 978-3-941273-13-9. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Joergensen, R.G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biol. Biochem. 1996, 28, 25–31. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- Hallmann, J.; Subbotin, S.A. Methods for extraction, processing and detection of plant and soil nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R.A., Coyne, D., Hallmann, J., Timper, P., Eds.; CABI: Boston, MA, USA, 2018; pp. 87–119. ISBN 978-1-78639-124-7. [Google Scholar]
- Bongers, T. De nematoden van Nederland: Een Identificatietabel voor de in Nederland Aangetroffen Zoetwater- en Bodembewonende Nematoden; Natuurhistorische Bibliotheek van de KNNV; 2. druk.; Stichting Uitg. KNNV: Utrecht, The Netherlands, 1994; ISBN 978-90-5011-015-0. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G.M. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Castillo, P.; Trapero-Casas, J.L.; Jiménez-Díaz, R.M. Effect of time, temperature, and inoculum density on reproduction of Pratylenchus thornei in carrot disk cultures. J. Nematol. 1995, 27, 120–124. [Google Scholar] [PubMed]
- Šišić, A.; Baćanović-Šišić, J.; Karlovsky, P.; Wittwer, R.; Walder, F.; Campiglia, E.; Radicetti, E.; Friberg, H.; Baresel, J.P.; Finckh, M.R. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum). PLoS ONE 2018, 13, e0191969. [Google Scholar] [CrossRef] [PubMed]
- Pflughöft, O. Pilzkrankheiten in Körnerfuttererbsen (Pisum sativum L.)—Diagnose, Epidemiologie, Ertragsrelevanz und Bekämpfung. Ph.D. Thesis, Georg-August-Universität, Göttingen, Germany, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.r-project.org/ (accessed on 19 August 2020).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; authors, E.; Heisterkamp, S.; Willigen, B.V. R-core nlme: Linear and Nonlinear Mixed Effects Models. 2017. Available online: https://rdrr.io/cran/nlme/ (accessed on 19 August 2020).
- Lenth, R.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2019. Available online: https://rdrr.io/cran/emmeans/ (accessed on 19 August 2020).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2011; ISBN 978-1-4129-7514-8. [Google Scholar]
- Zuur, A.; Leno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Statistics for Biology and Health; Springer: New York, NY, USA, 2009; ISBN 978-0-387-87457-9. [Google Scholar]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. 2020. Available online: https://rdrr.io/cran/Hmisc/ (accessed on 19 August 2020).
- Finckh, M.R.; Junge, S.; Schmidt, J.H.; Weedon, O.D. Disease and pest management in organic farming: A case for applied agroecology. In Improving Organic Crop Cultivation; Kopke, U., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; ISBN 978-1-78676-184-2. [Google Scholar]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Syst. 2012, 27, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Neugschwandtner, R.W.; Liebhard, P.; Kaul, H.-P.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef] [Green Version]
- George, E.; Horst, W.J.; Neumann, E. Adaptations of plants to adverse chemical soil conditions. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, H., Marschner, P., Eds.; Elsevier/Academic Press: London, UK; Waltham, MA, USA, 2012; pp. 409–472. ISBN 978-0-12-384905-2. [Google Scholar]
- Carr, P.; Gramig, G.; Liebig, M.A. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Nieto, M.; Wilmot, A.R.; El-Hamdaoui, A.; Bonilla, I.; Bolaños, L. Relationship between boron and calcium in the N2-fixing legume–rhizobia symbiosis. Plant Cell Environ. 2003, 26, 1905–1915. [Google Scholar] [CrossRef]
- Kandeler, E.; Böhm, K.E. Temporal dynamics of microbial biomass, xylanase activity, N-mineralisation and potential nitrification in different tillage systems. Appl. Soil Ecol. 1996, 4, 181–191. [Google Scholar] [CrossRef]
- Sparling, G. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust. J. Soil Res. 1992, 30. [Google Scholar] [CrossRef]
- Haynes, R.J. Size and activity of the soil microbial biomass under grass and arable management. Biol. Fertil. Soils. 1999, 30, 210–216. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Carter, M.R.; Noronha, C.; Peters, R.D.; Kimpinski, J. Influence of conservation tillage and crop rotation on the resilience of an intensive long-term potato cropping system: Restoration of soil biological properties after the potato phase. Agric. Ecosyst. Environ. 2009, 133, 32–39. [Google Scholar] [CrossRef]
- Kuntz, M.; Berner, A.; Gattinger, A.; Scholberg, J.M.; Mäder, P.; Pfiffner, L. Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 2013, 56, 251–260. [Google Scholar] [CrossRef]
- Neher, D.A.; Nishanthan, T.; Grabau, Z.J.; Chen, S.Y. Crop rotation and tillage affect nematode communities more than biocides in monoculture soybean. Appl. Soil Ecol. 2019, 140, 89–97. [Google Scholar] [CrossRef]
- Renčo, M.; Kováčik, P. Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments. J. Nematol. 2012, 44, 329–336. [Google Scholar] [PubMed]
- Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010, 42, 63–67. [Google Scholar]
- Hallmann, J.; Kiewnick, S. Diseases caused by nematodes in organic agriculture. In Plant Diseases and their Management in Organic Agriculture; Finckh, M.R., van Bruggen, A.H.C., Tamm, L., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 91–105. ISBN 978-0-89054-476-1. [Google Scholar]
- Van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
Year | Crop Type | Experiment 1 | Experiment 2 |
---|---|---|---|
2010–2011 | main | grass-clover | |
cover crop | – | ||
2011–2012 | main | grass-clover | grass-clover |
cover crop | – | – | |
2012–2013 | main | winter wheat | grass-clover |
cover crop | – | ||
2013–2014 | main | winter wheat | |
cover crop | summer vetch/clover | ||
2014–2015 | main | potatoes | |
cover crop | winter rye | summer vetch/clover | |
2015–2016 | main | winter triticale | potatoes |
cover crop | berseem clover (summer) | winter rye | |
2016–2017 | main | winter wheat | winter triticale |
cover crop | berseem clover (summer) | ||
2017–2018 | main | winter wheat (terminated due to drought) | |
cover crop | winter triticale/winter vetch | berseem clover (summer) | |
2018–2019 | main | potatoes | |
cover crop | winter rye | winter triticale/winter vetch | |
2019–2020 | main | grass-clover | potatoes |
cover crop | winter rye |
Soil Parameter | Unit | Experiment 1 | Experiment 2 |
---|---|---|---|
pH | 6.3 | 5.9 | |
P2O5 | mg kg soil−1 | 120 | 90 |
K2O | mg kg soil−1 | 180 | 100 |
MgO | mg kg soil−1 | 140 | 150 |
Corg | % | 1.22 | 1.16 |
Plow Tillage | Minimum Tillage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil Parameter | Unit | Mineral | Compost | Mineral | Compost | Exp × T | ||||
pH | 6.56 | ±0.20 | 6.74 | ±0.20 | 6.70 | ±0.20 | 6.74 | ±0.19 | n.s. | |
P2O5 | mg kg soil−1 | 71 a,3 | ±28 | 103 ab | ±29 | 125 b | ±28 | 133 b | ±29 | n.s. |
K2O | mg kg soil−1 | 124 a | ±9.4 | 136 a | ±11.2 | 319 b | ±9.1 | 324 b | ±23.5 | n.s. |
MgO | mg kg soil−1 | 166 a | ±11.9 | 174 ab | ±12.1 | 172 a | ±11.8 | 189 b | ±12.4 | n.s. |
Cu | mg kg soil−1 | 3.29 b | ±0.22 | 2.99 a | ±0.22 | 3.07 ab | ±0.23 | 3.15 ab | ±0.26 | n.s. |
Zn | mg kg soil−1 | 5.35 a | ±0.25 | 6.5 b | ±0.47 | 6.94 b | ±0.25 | 7.15 ab | ±0.66 | n.s. |
Mn | mg kg soil−1 | 374 | ±34 | 354 | ±34 | 394 | ±36 | 357 | ±34 | n.s. |
B | mg kg soil−1 | 0.65 a | ±0.11 | 0.71 a | ±0.11 | 0.89 b | ±0.11 | 0.91 b | ±0.11 | 0.001 |
Fe | mg kg soil−1 | 118 | ±13 | 117 | ±13 | 121 | ±13 | 120 | ±13 | n.s. |
Salt (KCl) | mg l−1 | 486 a | ±49 | 582 abc | ±67 | 700 b | ±49 | 762 c | ±50 | 0.03 |
Corg | % | 1.27 a | ±0.06 | 1.52 b | ±0.07 | 1.79 c | ±0.06 | 1.95 d | ±0.07 | n.s. |
Ntotal | % | 0.15 a | ±0.007 | 0.18 b | ±0.008 | 0.2 c | ±0.006 | 0.21 c | ±0.008 | n.s. |
Microbial respiration | µg CO2 (g dry soil d)−1 | 33.9 a | ±1.3 | 41.6 b | ±1.2 | 66.7 c | ±4.4 | 73.7 c | ±3.7 | n.s. |
Cmic/Nmic 1 | 5.62 | ±0.27 | 5.52 | ±0.35 | 4.76 | ±0.12 | 4.84 | ±0.19 | n.s. | |
Cmic/Corg | % | 2.47 ab | ±0.19 | 2.36 a | ±0.19 | 2.77 ab | ±0.22 | 2.7 b | ±0.2 | 0.02 |
MR/Cmic | % | 11.1 a | ±1.27 | 11.7 ab | ±1.27 | 13.5 ab | ±1.27 | 14.0 b | ±1.27 | n.s. |
Nmic/Ntotal | % | 3.68 a | ±0.31 | 3.86 a | ±0.31 | 5.27 b | ±0.31 | 5.18 b | ±0.31 | n.s. |
Bacterivorous nematodes | individuals 100 mL soil−1 | 546 a | ±471 | 662 a | ±469 | 1263 b | ±478 | 1295 b | ±474 | 0.03 |
Fungivorous nematodes | individuals 100 mL soil−1 | 326 | ±69 | 313 | ±69 | 417 | ±69 | 335 | ±69 | 0.008 |
Herbivorous nematodes | individuals 100 mL soil−1 | 568 | ±149 | 675 | ±149 | 889 | ±149 | 924 | ±149 | n.s. |
Om + Pr nematodes 2 | individuals 100 mL soil−1 | 72 | ±21 | 118 | ±21 | 96 | ±36 | 155 | ±36 | n.s. |
Plow Tillage | Minimum Tillage | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | Mineral | Compost | Mineral | Compost | ||||
Experiment 1 | |||||||||
Pea dry weight (above) | g pot−1 | 2.43 a,1 | ±0.27 | 2.55 a | ±0.24 | 3.43 b | ±0.28 | 4.03 b | ±0.19 |
Pea root fresh weight | g pot−1 | 1.25 ab | ±0.19 | 1.09 a | ±0.19 | 1.43 ab | ±0.21 | 1.62 b | ±0.21 |
Pods | # pot−1 | 3.20 a | ±0.39 | 3.05 ab | ±0.39 | 3.35 ab | ±0.39 | 4.00 b | ±0.39 |
Root lesion severity | % | 74.5 | ±2.4 | 74.7 | ±2.4 | 75.1 | ±2.4 | 70.8 | ±2.4 |
Root lesion length | mm | 32.3 | ±2.58 | 33.0 | ±3.15 | 29.7 | ±2.62 | 28.2 | ±2.38 |
P. penetrans2 in roots | # × 1000 | 7.40 | ±1.58 | 5.39 | ±1.58 | 6.79 | ±1.58 | 8.35 | ±1.58 |
Experiment 2 | |||||||||
Pea dry weight (above) | g pot−1 | 2.31 a | ±0.28 | 2.33 a | ±0.22 | 3.09 b | ±0.26 | 3.37 b | ±0.23 |
Pea root fresh weight | g pot−1 | 1.31 ab | ±0.19 | 1.04 a | ±0.19 | 1.33 ab | ±0.21 | 1.55 b | ±0.21 |
Pods | # pot−1 | 2.95 | ±0.39 | 2.80 | ±0.39 | 3.30 | ±0.39 | 3.45 | ±0.39 |
Root lesion severity | % | 69.0 ab | ±2.9 | 73.9 b | ±2.9 | 72.6 b | ±2.9 | 61.2 a | ±2.9 |
Root lesion length | mm | 27.6 ab | ±2.58 | 32.9 b | ±3.15 | 30.6 b | ±2.62 | 24.7 a | ±2.38 |
P. penetrans2 in roots | # × 1000 | 1.82 ab | ±1.33 | 1.39 a | ±1.33 | 1.65 a | ±1.33 | 3.10 b | ±1.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, J.H.; Hallmann, J.; Finckh, M.R. Bacterivorous Nematodes Correlate with Soil Fertility and Improved Crop Production in an Organic Minimum Tillage System. Sustainability 2020, 12, 6730. https://doi.org/10.3390/su12176730
Schmidt JH, Hallmann J, Finckh MR. Bacterivorous Nematodes Correlate with Soil Fertility and Improved Crop Production in an Organic Minimum Tillage System. Sustainability. 2020; 12(17):6730. https://doi.org/10.3390/su12176730
Chicago/Turabian StyleSchmidt, Jan H., Johannes Hallmann, and Maria R. Finckh. 2020. "Bacterivorous Nematodes Correlate with Soil Fertility and Improved Crop Production in an Organic Minimum Tillage System" Sustainability 12, no. 17: 6730. https://doi.org/10.3390/su12176730
APA StyleSchmidt, J. H., Hallmann, J., & Finckh, M. R. (2020). Bacterivorous Nematodes Correlate with Soil Fertility and Improved Crop Production in an Organic Minimum Tillage System. Sustainability, 12(17), 6730. https://doi.org/10.3390/su12176730