Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Weather
2.2. Experimental Design
2.2.1. Establishment of Vegetables
2.2.2. Mycorrhizal Culture and Inoculation
2.2.3. Vegetable Management, Harvesting, and Sample Collection
2.2.4. Determination of Phytochemicals and Vegetable Nutrient Quality
2.3. Statistical Analysis
3. Results
3.1. Crop Diseases
3.2. Analysis of Variance
3.2.1. Mycorrhizal Treatment Effects
3.2.2. Cropping Systems Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carr, P.M.; Delate, K.; Zhao, X.; Cambardella, C.A.; Carr, P.L.; Heckman, J.R. Impacts on Soil, Food, and Human Health. In Soils and Human Health; CRC Press: Boca Raton, FL, USA, 2012; Volume 241. [Google Scholar]
- Reeve, J.; Hoagland, L.; Villalba, J.; Carr, P.; Atucha, A.; Cambardella, C.; Davis, D.; Delate, K. Organic farming, soil health, and food quality: Considering possible links. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 137, pp. 319–367. [Google Scholar]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reganold, J.P. Comparison of soil properties as influenced by organic and conventional farming systems. Am. J. Altern. Agric. 2009, 3, 144–155. [Google Scholar] [CrossRef]
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Ponisio, L.C.; Ehrlich, P.R. Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability 2016, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [Green Version]
- Roos, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 21. [Google Scholar] [CrossRef] [Green Version]
- Weyers, S.L.; Archer, D.W.; Forcella, F.; Gesch, R.; Johnson, J.M.F. Strip-tillage reduces productivity in organically managed grain and forage cropping systems in the Upper Midwest, USA. Renew. Agric. Food Syst. 2018, 33, 309–321. [Google Scholar] [CrossRef]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Pang, X.P.; Letey, J. Organic farming: Challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 863–885. [Google Scholar] [CrossRef] [Green Version]
- World watch. Crop Yields Expand, but Nutrition Is Left Behind. In Vision for a Sustainable World; World watch: Washington, DC, USA, 2016; Volume 2016. [Google Scholar]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Davis, D.R.; Epp, M.D.; Riordan, H.D. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr. 2004, 23, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Ficco, D.; Riefolo, C.; Nicastro, G.; De Simone, V.; Di Gesu, A.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop. Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Ikemura, Y.; Shukla, M.K. Soil quality in organic and conventional farms of New Mexico, USA. J. Org. Syst. 2009, 4, 34–47. [Google Scholar]
- McGarry, D.; Bridge, B.J.; Radford, B.J. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Tillage Res. 2000, 53, 105–115. [Google Scholar] [CrossRef]
- Araújo, A.S.; Leite, L.F.; Santos, V.B.; Carneiro, R.F. Soil microbial activity in conventional and organic agricultural systems. Sustainability 2009, 1, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Reicosky, D.C.; Allmaras, R.R.; Sauer, T.J.; Venterea, R.T.; Dell, C.J. Greenhouse gas contributions and mitigation potential of agriculture in the central USA. Soil Tillage Res. 2005, 83, 73–94. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar]
- Te Pas, C.M.; Rees, R.M. Analysis of Differences in Productivity, Profitability and Soil Fertility between Organic and Conventional Cropping Systems in the Tropics and Sub-tropics. J. Integr. Agric. 2014, 13, 2299–2310. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Puech, C.; Baudry, J.; Joannon, A.; Poggi, S.; Aviron, S. Organic vs. conventional farming dichotomy: Does it make sense for natural enemies? Agric. Ecosyst. Environ. 2014, 194, 48–57. [Google Scholar] [CrossRef]
- Lee, K.S.; Choe, Y.C.; Park, S.H. Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. J. Environ. Manag. 2015, 162, 263–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fess, T.; Benedito, V. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis. Sustainability 2018, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Cordoa, E.M.; Chirinda, N.; Li, F.; Olesen, J.E. Contributions from carbon and nitrogen in roots to closing the yield gap between conventional and organic cropping systems. Soil Use Manag. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, S.V.; Costa, A.S.; Alves, R.C.; Oliveira, M.B. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2014, 67, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic food: Nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr. 2003, 54, 357–371. [Google Scholar] [CrossRef]
- Tarozzi, A.; Hrelia, S.; Angeloni, C.; Morroni, F.; Biagi, P.; Guardigli, M.; Cantelli-Forti, G.; Hrelia, P. Antioxidant effectiveness of organically and non-organically grown red oranges in cell culture systems. Eur. J. Nutr. 2006, 45, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Petkovsek, M.M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayyed, H.; Refa’t Al-Kurd, M.M.; Qader, S.A. Determination of Antioxidant Content and Activity in Eight Jordanian Fresh Green Leafy Vegetables. Agric. Res. Technol. Open Access J. 2019, 19, 556102. [Google Scholar] [CrossRef]
- Roberts, W.G.; Gordon, M.H. Determination of the total antioxidant activity of fruits and vegetables by a liposome assay. J. Agric. Food Chem. 2003, 51, 1486–1493. [Google Scholar] [CrossRef]
- Reche, J.; Hernández, F.; Almansa, M.; Carbonell-Barrachina, Á.; Legua, P.; Amorós, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT 2019, 99, 438–444. [Google Scholar] [CrossRef]
- da Silva Borges, L.; de Souza Vieira, M.C.; Vianello, F.; Goto, R.; Lima, G.P.P. Antioxidant compounds of organically and conventionally fertilized jambu (Acmella oleracea). Biol. Agric. Hortic. 2016, 32, 149–158. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Paradiso, R.; Barbieri, G. Quality and nutritional value of vegetables from organic and conventional farming. Sci. Hortic. 2013, 164, 532–539. [Google Scholar] [CrossRef]
- Sobieralski, K.; Siwulski, M.; Sas-Golak, I. Nutritive and health-promoting value of organic vegetables. Acta Sci. Pol. Technol. Aliment. 2013, 12, 113–123. [Google Scholar]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018, 9, 14. [Google Scholar] [CrossRef]
- Douds, D.; Nagahashi, G.; Hepperly, P. Production of inoculum of indigenous AM fungi and options for diluents of compost for on-farm production of AM fungi. Bioresour. Technol. 2010, 101, 2326–2330. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Pellegrino, E.; Öpik, M.; Bonari, E.; Ercoli, L. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 2015, 84, 210–217. [Google Scholar] [CrossRef]
- Lekberg, Y.; Koide, R.T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 2005, 168, 189–204. [Google Scholar] [CrossRef]
- Kabir, Z. Tillage or no-tillage: Impact on mycorrhizae. Can. J. Plant Sci. 2005, 85, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.H.; Graham, J.H. Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 2002, 244, 263–271. [Google Scholar] [CrossRef]
- Bowles, T.M.; Jackson, L.E.; Loeher, M.; Cavagnaro, T.R. Data from: Ecological intensification and arbuscular mycorrhizas: A meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 2017, 54, 1785–1793. [Google Scholar] [CrossRef] [Green Version]
- Douds, D.; Seidel, R. The contribution of arbusclar mycorrhizal fungi to the success or failure of agricultural practices. In Microbial Ecology; Taylor Francis Group: Boca Raton, FL, USA, 2012; pp. 133–152. [Google Scholar]
- Boswell, E.; Koide, R.; Shumway, D.; Addy, H. Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecosyst. Environ. 1998, 67, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Galvez, L.; Douds, D.; Wagoner, P.; Longnecker, L.; Drinkwater, L.; Janke, R. An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am. J. Altern. Agric. 1995, 10, 152–156. [Google Scholar] [CrossRef]
- Castillo, C.G.; Rubio, R.; Rouanet, J.L.; Borie, F. Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol. Fertil. Soils 2006, 43, 83–92. [Google Scholar] [CrossRef]
- Johnson, N.C.; Copeland, P.J.; Crookston, R.K.; Pfleger, F. Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agron. J. 1992, 84, 387–390. [Google Scholar] [CrossRef]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G.D. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, E.H.; Eom, A.H. Effects of organic farming on communities of arbuscular mycorrhizal fungi. Mycobiology 2008, 36, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.R.; Smith, R.G.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S.; Seidel, R. Weed–crop competition relationships differ between organic and conventional cropping systems. Weed Res. 2009, 49, 572–580. [Google Scholar] [CrossRef]
- Liebhardt, W.; Andrews, R.; Culik, M.; Harwood, R.; Janke, R.; Radke, J.; Reiger-Schwartz, S. Crop production during conversion from conventional to low-input methods. Agron. J. 1989, 81, 150–159. [Google Scholar] [CrossRef]
- Lotter, D.W.; Seidel, R.; Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef] [Green Version]
- SAS. SAS 9.4 Language Reference: Concepts; SAS Institute Inc.: Cary, NC, USA, 2014; p. 828. [Google Scholar]
- SigmaPlot. SigmaPlot Version 14.0; Systat Software Inc.: San Jose, CA, USA, 2018. [Google Scholar]
- Ahmad, R.; Hussain, S.; Anjum, M.A.; Khalid, M.F.; Saqib, M.; Zakir, I.; Hassan, A.; Fahad, S.; Ahmad, S. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In Plant Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2019; pp. 191–205. [Google Scholar]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.-J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Moura, C.F.H.; Gomes-Filho, E.; Marco, C.A.; Urban, L.; Miranda, M.R.A. The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development. PLoS ONE 2013, 8, e56354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Janzantti, N.S.; Macoris, M.S.; Garruti, D.S.; Monteiro, M. Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT-Food Sci. Technol. 2012, 46, 511–518. [Google Scholar] [CrossRef]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.). J. Agric. Food Chem. 2012, 60, 3144–3150. [Google Scholar] [CrossRef]
- de Oliveira, A.B.; Lopes, M.M.D.; Moura, C.F.H.; Oliveira, L.D.; de Souza, K.O.; Gomes, E.; Urban, L.; de Miranda, M.R.A. Effects of organic vs. conventional farming systems on quality and antioxidant metabolism of passion fruit during maturation. Sci. Hortic. 2017, 222, 84–89. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventos, R.M. Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chem. 2012, 130, 222–227. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Simmons, B.L.; Coleman, D.C. Microbial community response to transition from conventional to conservation tillage in cotton fields. Appl. Soil Ecol. 2008, 40, 518–528. [Google Scholar] [CrossRef]
- Jonason, D.; Andersson, G.K.; Öckinger, E.; Rundlöf, M.; Smith, H.G.; Bengtsson, J. Assessing the effect of the time since transition to organic farming on plants and butterflies. J. Appl. Ecol. 2011, 48, 543–550. [Google Scholar] [CrossRef] [Green Version]
System | Nitrogen Source | Cover Crops | Herbicides * | Primary Tillage | Secondary Tillage/Cultivation * | |||
---|---|---|---|---|---|---|---|---|
Winter | Summer | Tine | Rotary Hoe | Inter-row | ||||
MNR | Manure, legume cover crops, crop rotation | Rye, hairy vetch | Clovers | None | Moldboard | 1–2 | 1–2 | 1–2 |
CNV | Mineral fertilizers | Rye | None | 1–2 | Chisel | None | None | None |
(A) | Yield | Marketable Yield | ||||||
Carrot | Pepper | Tomato | Carrot | Pepper | Tomato | |||
---|---|---|---|---|---|---|---|---|
year | 0.2099 | 0.7259 | 0.0085 | 0.2502 | ||||
system | 0.7624 | 0.0641 | 0.8547 | 0.0414 | 0.025 | 0.8548 | ||
AMF | 0.0942 | 0.166 | 0.3878 | 0.3499 | 0.1598 | 0.3877 | ||
year x system | 0.6236 | 0.2527 | 0.4395 | 0.006 | ||||
year x AMF | 0.2068 | 0.4756 | 0.309 | 0.3818 | 0.8707 | |||
system x AMF | 0.0803 | 0.1243 | 0.1843 | 0.3424 | 0.309 | |||
year x system x AMF | 0.0441 | 0.556 | <0.0001 | 0.0101 | ||||
(B) | Antioxidant | Vitamin C | ||||||
Carrot | Green Pepper | Red Pepper | Tomato | Carrot | Green Pepper | Red Pepper | Tomato | |
year | <0.0001 | <0.0001 | 0.0908 | 0.8608 | 0.0004 | 0.0506 | ||
system | 0.7155 | 0.0703 | 0.6634 | 0.1415 | 0.0788 | 0.6005 | 0.7054 | 0.0102 |
AMF | 0.0144 | 0.0767 | 0.464 | 0.9574 | 0.0012 | 0.0005 | 0.7551 | 0.6822 |
year x system | 0.0523 | 0.2674 | 0.0639 | 0.0997 | 0.0044 | 0.0126 | ||
year x AMF | 0.6109 | 0.2953 | 0.6088 | 0.1737 | 0.056 | 0.0181 | 0.4373 | 0.6271 |
system x AMF | 0.8577 | 0.3544 | 0.953 | 0.2373 | 0.8421 | 0.7905 | ||
year x system x AMF | 0.7725 | 0.1671 | 0.8626 | 0.4551 | 0.1776 | 0.6762 | ||
(C) | Carrot | Tomato | ||||||
α-Carotene | β-Carotene | Lycopene | ||||||
year | 0.1213 | 0.5063 | ||||||
system | 0.7968 | 0.6544 | 0.0408 | |||||
AMF | 0.0062 | 0.0337 | 0.4683 | |||||
year x system | 0.7968 | 0.7525 | ||||||
year x AMF | 0.6788 | 0.4172 | 0.0322 | |||||
system x AMF | 0.2704 | 0.2396 | ||||||
year x system x AMF | 0.5689 | 0.1865 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability 2020, 12, 8965. https://doi.org/10.3390/su12218965
Mukherjee A, Omondi EC, Hepperly PR, Seidel R, Heller WP. Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability. 2020; 12(21):8965. https://doi.org/10.3390/su12218965
Chicago/Turabian StyleMukherjee, Atanu, Emmanuel C. Omondi, Paul R. Hepperly, Rita Seidel, and Wade P. Heller. 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables" Sustainability 12, no. 21: 8965. https://doi.org/10.3390/su12218965
APA StyleMukherjee, A., Omondi, E. C., Hepperly, P. R., Seidel, R., & Heller, W. P. (2020). Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability, 12(21), 8965. https://doi.org/10.3390/su12218965