Towards Sustainability in E-Banking Website Assessment Methods
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. MCDA Foundations of the Bank Websites’ Evaluation
3.2. Criteria for Bank Websites’ Evaluation
- The economic criteria include:
- A1 Annual nominal interest rate on personal accounts,
- A2 Account maintenance PLN/month,
- A3 Fee for a transfer to own bank,
- A4 Fee for transfer to another bank,
- A5 Payment order,
- A6 Fee for issuing a debit card,
- A7 Monthly fee for a card PLN/month,
- A8 Interest rate on savings account,
- A9 Interest rate on deposits PLN 10,000,
- A10 Interest rate on loans PLN 10,000.
- The technological criteria include:
- A11 Additional services,
- A12 Account access channels,
- A13 Security,
- A14 Visualization,
- A15 Navigation,
- A16 Readability and user-friendliness,
- A17 The scope of functionality.
3.3. Sustainability in e-Banking Website Assessment
- Definitions of a set of attributes (criteria) for assessing the functionality of electronic banking websites,
- Verification of the clarity and correctness of the set of questions for a particular, randomly selected client, using a randomly selected group of users,
- Adopting an unambiguous scale for evaluating attributes during the data collection process,
- Conducting a survey to obtain data and their initial verification,
- Analysis of the results for simple scoring methods (without preferences and with imposed, sample preferences),
- Adopting selected evaluation methods and performing calculations on the data provided by the research sample,
- Comparison of the obtained findings and discussion of their compliance,
- Conclusions resulting from the comparison of the applied methods.
3.4. Bank Websites’ Evaluation Results Aggregation Scheme
3.4.1. Simple Scoring Method
3.4.2. Authors’ Own Conversion Method
- Constructing a matrix of distances from the maximum value for each criterion in every website, establishing the maximum value (Equation (1)):Pi.max = Max{fi(aj), …, fn(am)} for i = 1, …, n and j = 1,…, m
- Establishing the matrix of the distances from the maximum value (Equation (2))δ (fi(aj)) = Pi,max − fi(aj) for i = 1, …, n and j = 1,…, m
- Calculating the average distance from the maximum value for each criterion (Equation (3)),Fi,j = ∑(m,j=1) δ(fi(aj))/m
- As a result of the above operation, constructing a matrix of differences in the distance from the maximum value and the average distance according to criteria,
- For each bank website: Constructing conversion matrices—modules of relative distances of particular criteria to remaining criteria (the distance from the same criterion is 0), the obtained distances below the diagonal are the converse of the values over the diagonal,
- Averaging criteria conversion matrices—creating one matrix of average modules of values for all criteria (Equation (4)):Ai,j = ∑(n,m,i=1,j=1) (αi,j − αi+2,j)/n
- Transforming the conversion matrix of criteria into a superior preference matrix (calculating squared matrix, adding up rows, standardization of the obtained preference vector; repeated squaring, adding up rows, standardization of preference vector—repeating this iteration until there are minimum differences in subsequent preference vectors).
- Constructing a matrix of distances from the maximum value for each criterion and each website:
- establishing the maximum value (Equation (5)):Pi.max = Max{fi(aj), …, fn(am)} for i = 1, …, n and j = 1, …, m
- Establishing the matrix of distances from the maximum value (Equation (6)):δ (fi(aj)) = Pi,max − fi(aj) for i = 1, …, n and j = 1, …, m
- Calculating the average distance from the maximum value for each website (Equation (7)),Fi = ∑(m,j=1) δ(fi(aj))/m
- Constructing a matrix of the differences of deviations from the maximum value and the average distance of the features from the maximum,
- For each criterion: Constructing a matrix of transformations (conversions) of the differences of the average distance from the maximum value between the websites, analogically as presented above values below the diagonal are the converse of the values over the diagonal,
- Constructing a module matrix of transformations of the differences of average distance from the maximum value between the websites, for each criterion (Equation (8)),Ai,j = ∑(n,m,i=1,j=1) (αi,j − αi+2,j)/n
- For each module matrix of the transformation of the differences of the average distance from the maximum value between the websites, squaring it, adding up rows, standardization of the obtained ranking vector and repeating this operation until the obtained differences between two ranking vectors for each criterion will be minimal.
- Using the obtained vectors to construct a combined ranking matrix—returning to the matrix where in,
- In its side-heading, there are criteria; in the heading, names of bank websites by appropriate transfer of the obtained preference vectors for each criterion, multiplying the matrix obtained in such a way by the previously calculated preference vector Equation (10)),T’ = Tf*Ta
- Analyzing final results and drawing conclusions (note: the lowest distances in this case are the most favorable, comparability adjustments to other methods can be obtained by subtracting these values from 1 and their repeated standardization).
3.4.3. Promethee II
- Output dominance flow describing how much the variant i a exceeds the other variants Equation (11)):Φ+(ai) = ∑(n,j=1) π(ai,bj)
- Input dominance flow, indicating how much variant i a is dominated by other variants Equation (12)):Φ−(ai) = ∑(n,j=1) π(bj,ai)
- Preference relation (threshold)—strict preference—variant ai exceeds variant (Equation (14)):bj (ai L bj) when Φ(ai) > Φ(bj)
- Indifference relation (threshold)—equivalence—variant ai is equivalent to variant (Equation (15)):bj (ai I bj) when Φ(ai) = Φ(bj)
3.4.4. PROSA
- Φj(a) << Φnet(a) means that for the alternative a, the performance of criterion j is compensated by other criteria (alternative a is not balanced in terms of criterion j),
- Φj(a) >> Φnet(a) means that for the alternative a, the performance of criterion j is compensated by other criteria (alternative a is not balanced in terms of criterion j),
- Φj(a) ~ Φnet(a)means that for the alternative a is balanced in terms of criterion j.
3.4.5. TOPSIS
4. Empirical Research
4.1. Research Sample and Its Initial Preparation
- complete fulfilment of the evaluation criterion (attribute),
- 0.75—almost complete fulfilment of the criteria,
- 0.50—partial fulfilment of the criteria,
- 0.25—minimum fulfilment of the criteria,
- failure to fulfil the criteria conditions.
4.2. Comparison of the Results of the Scoring Method without Preferences and the Scoring Method with Preferences
- Economic (70% for economic criteria, 15% for the remaining ones),
- Technological (70% for technological criteria, 15% for the remaining ones),
- Anti-crisis (70% for anti-crisis criteria, 15% for the remaining ones).
4.3. Comparison of the Results of the Scoring Methods with the Conversion, Promethee II, PROSA and TOPSIS Methods
4.4. Comparison of the Results of the Scoring Method without Preferences and the Scoring Method with Preferences
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Online Banking Penetration in Selected European Markets in 2019. Available online: https://www.statista.com/statistics/222286/online-banking-penetration-in-leading-european-countries/ (accessed on 1 August 2020).
- Barbrich, P. NetB@nk, Bankowość Internetowa i Mobilna, Płatności Bezgotówkowe, 3 Kwartał 2019. Związek Banków Polskich, Warszawa. Available online: https://www.zbp.pl/getmedia/053cb32a-a816-4825-8c45-982ee6fe817a/Raport-Netbank_Q3-2019_fin2 (accessed on 20 June 2020).
- Nielsen, J.; Budiu, R. Mobile Usability; New Riders Press: Indianapolis, IN, USA, 2012. [Google Scholar]
- Nielsen, J. Designing Web Usability: The Practice of Simplicity; New Riders Publishing: Indianapolis, IN, USA, 1999. [Google Scholar]
- Roy, B. Multicriteria Methodology for Decision Aiding; Springer: New York, NY, USA, 1996. [Google Scholar]
- Keenney, R.I.; Raiffa, H. Decision Analysis with Multiple Conflicting Objectives; Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Nijkamp, P.; van Delft, A. Multi-Criteria Analysis and Regional Decision-Making; Springer: New York, NY, USA, 1977. [Google Scholar]
- Wątróbski, J. Outline of Multicriteria Decision-making in Green Logistics. Transp. Res. Procedia 2016, 16, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Wątróbski, J.; Jankowski, J. Guideline for MCDA Method Selection in Production Management Area. In New Frontiers in Information and Production Systems Modelling and Analysis: Incentive Mechanisms, Competence Management, Knowledge-based Production; Różewski, P., Novikov, D., Bakhtadze, N., Zaikin, O., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 119–138. [Google Scholar]
- Wątróbski, J.; Jankowski, J.; Piotrowski, Z. The Selection of Multicriteria Method Based on Unstructured Decision Problem Description. In Computational Collective Intelligence. Technologies and Applications; Springer: Cham, Switzerland, 2014; pp. 454–465. [Google Scholar] [CrossRef]
- Barnes, S.J.; Vidgen, R. Measuring web site quality improvements: A case study of the forum on strategic management knowledge exchange. Ind. Manag. Data Syst. 2003, 103, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Shih, H.-P. Extended technology acceptance model of Internet utilization behavior. Inf. Manag. 2004, 41, 719–729. [Google Scholar] [CrossRef]
- Webb, H.W.; Webb, L.A. SiteQual: An integrated measure of Web site quality. J. Enterp. Inf. Manag. 2004, 17, 430–440. [Google Scholar] [CrossRef]
- Buttle, F. SERVQUAL: Review, critique, research agenda. Eur. J. Mark. 1996, 30, 8–32. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2018. [Google Scholar] [CrossRef]
- Myers, B.; Kappelman, L.; Prybutok, V.R. A Comprehensive Model for Assessing the Quality and Productivity of the Information Systems Function. Inf. Resour. Manag. J. 1997, 10, 6–25. [Google Scholar] [CrossRef]
- Boudreau, M.-C.; Gefen, D.; Straub, D.W. Validation in Information Systems Research: A State-of-the-Art Assessment. MIS Q. 2001, 25, 1–16. [Google Scholar] [CrossRef]
- Melone, N.P. A Theoretical Assessment of the User-Satisfaction Construct in Information Systems Research. Manag. Sci. 1990, 36, 76–91. [Google Scholar] [CrossRef]
- Dudycz, H.; Dyczkowski, M. Efektywność Przedsięwzięć Informatycznych Podstawy Metodyczne Pomiaru; Przykłady Zastosowań; Uniwersytet Ekonomiczny we Wrocławiu: Wroclaw, Poland, 2007. [Google Scholar]
- Lech, P. Metodyka Ekonomicznej Oceny Przedsięwzięć Informatycznych Wspomagających Zarządzanie Organizacją, Lech Przemysław, Wydawnictwo Uniwersytetu Gdańskiego: Ekonomiczna Księgarnia Internetowa EKI.; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2007. [Google Scholar]
- Czarnacka-Chrobot, B. Wymiarowanie Funkcjonalne Przedsięwzięć Rozwoju Systemów Oprogramowania Wspomagających Zarządzanie; Szkoła Główna Handlowa w Warszawie: Warszaw, Poland, 2009. [Google Scholar]
- Wątróbski, J. An Ontology Supporting Multiple-Criteria Decision Analysis Method Selection. In Intelligent Decision Technologies 2016: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies (KES-IDT 2016); Springer: Cham, Switzerland, 2016; pp. 89–99. [Google Scholar]
- Whiteley, D. E-commerce: Strategy, Technologies and Applications; McGraw-Hill: London, UK, 2000. [Google Scholar]
- Evans, J.R.; King, V.E. Business-to-Business Marketing and the World Wide Web: Planning, Managing, and Assessing Web Sites. Ind. Mark. Manag. 1999, 28, 343–358. [Google Scholar] [CrossRef]
- Selz, D.; Schubert, P. Web Assessment—A Model for the Evaluation And the Assessment of Successful Electronic Commerce Applications. Electron. Mark. 1997, 7. [Google Scholar] [CrossRef]
- Chmielarz, W. Methodological Aspects of the Evaluation of Individual E-Banking Services for Selected Banks In Poland. In Infonomics for Distributed Business and Decision-Making Environments. Creating Information System Ecology; Pańkowska, M., Ed.; IGI Global, Business Science Reference, Hershey-New York: New York, NY, USA, 2010; Chapter 11; pp. 201–216. [Google Scholar]
- Miranda, F.J.; Cortés, R.; Barriuso, C. Quantitative evaluation of e-banking web sites: An empirical study of Spanish banks. Electron. J. Inf. Syst. Eval. 2006, 9, 73–82. [Google Scholar]
- Diniz, E.; Porto, R.M.; Adachi, T. Internet Banking in Brazil: Evaluation of Functionality, Reliability and Usability. Electron. J. Inf. Syst. Eval. 2005, 8, 41–50. [Google Scholar]
- Guru, B.; Shanmugam, B.; Alam, N.; Perera, J. An Evaluation of Internet Banking Sites in Islamic Countries. J. Internet Bank. Commer. 2003, 8, 1–11. [Google Scholar]
- Saraswat, A.; Katta, A. Quantitative Evaluation of E-Banking Websites: A Study of Indian Banks. Icfai Univ. J. Inf. Technol. 2008, 3, 32–49. [Google Scholar]
- Mateos, M.B.; Chamorro, A.; Gonzalez, F.J.M.; Lopez, O.R.G. A New Web Assessment Index: Spanish Universities Analysis. Internet Res. Electron. Appl. Policy 2001, 11, 226–234. [Google Scholar] [CrossRef]
- Chiemeke, S.C.; Evwiekpaefe, A.E.; Chete, F.O. The Adoption of Internet Banking in Nigeria: An Empirical Investigation. Available online: http://www.icommercecentral.com/open-access/the-adoption-of-internet-banking-in-nigeria-an-empirical-investigation-1-9.php?aid=38546 (accessed on 10 July 2020).
- Hadhémi, A. An evaluation of internet banking and online brokerage in Tunisia. In Proceedings of the 1st International Conference on E-Business and E-learning (EBEL), Amman, Jordan, 23–24 May 2005; pp. 147–158. [Google Scholar]
- Migdadi, Y.K. Quantitative Evaluation of the Internet Banking Service Encounter’ s Quality: Comparative Study between Jordan and the UK Retail Banks. J. Internet Bank. Commer. 2008, 13, 2–7. [Google Scholar]
- Wątróbski, J.; Jankowski, J.; Karczmarczyk, A.; Ziemba, P. Integration of Eye-Tracking Based Studies into e-Commerce Websites Evaluation Process with eQual and TOPSIS Methods; Springer: Berlin/Heidelberg, Germany, 2017; pp. 56–80. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Jankowski, J.; Wolski, W. PEQUAL-E-commerce websites quality evaluation methodology. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016; pp. 1317–1327. [Google Scholar]
- Hasan, L.; Abuelrub, E. Assessing the quality of web sites. Appl. Comput. Inform. 2011, 9, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Jin-Young, K.; Linda, C. An analysis of smart tourism system satisfaction scores: The roleof priced versus average quality. Comput. Hum. Behav. 2015, 50, 610–617. [Google Scholar]
- Saaty, T.L. Fundamentals of the Analytic network process. In Proceedings of the 5th International Conference on th Analytic Hierarchy Process, Kobe, Japan, 12–14 August 1999; pp. 20–33. [Google Scholar]
- Shaaban, M.; Scheffran, J.; Böhner, J.; Elsobki, M.S. Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis. Energies 2018, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Toklu, M.C.; Taşkın, H. A Dynamic Performance Evaluation Model for SMEs Based on Fuzzy DEMATEL and Fuzzy ANP. Int. J. Oper. Res. Inf. Syst. (IJORIS) 2019, 10, 16–30. [Google Scholar] [CrossRef]
- Dadashpour, I. Identifying and ranking of alternative fuels by using AHP and PROMETHEE II methods to find best fuel for bus rapid transit system. Int. J. Bus. Anal. 2018, 5. [Google Scholar] [CrossRef]
- Piwowarski, M.; Ziemba, P. Metoda PROMETHEE II w wielokryterialnej ocenie produktów. Pol. Stow. Zarządzania Wiedzą 2009, 18, 135–144. [Google Scholar]
- Vivas, R.; Sant’anna, Â.; Esquerre, K.; Freires, F. Measuring Sustainability Performance with Multi Criteria Model: A Case Study. Sustainability 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshinee, P. Examining Critical Success Factors of Cloud Computing Adoption: Integrating AHP-Structural Mediation Model. Int. J. Decis. Support Syst. Technol. (IJDSST) 2020, 12, 80–96. [Google Scholar] [CrossRef]
- Tupenaite, L. Sustainability Assessment of the New Residential Projects in the Baltic States: A Multiple Criteria Approach. Sustainability 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments. Expert Syst. Appl. 2019, 137, 202–231. [Google Scholar] [CrossRef]
- Chmielarz, W.; Zborowski, M. Comparative Analysis of Electronic Banking Websites in Poland in 2014 and 2015. In Information Technology for Management; Springer: Cham, Switzerland, 2016; pp. 147–161. [Google Scholar] [CrossRef]
- Chmielarz, W.; Zborowski, M. Conversion Method in Comparative Analysis of e-Banking Services in Poland. Lect. Notes Bus. Inf. Process. 2013, 158, 227–240. [Google Scholar]
- Zborowski, M. Universites with an Economic Profile Websites Modelling. Ph.D. Thesis, Faculty of Management at the University of Warsaw, Warsaw, Poland, 2013. [Google Scholar]
- Saaty, T. How to Make a decision. The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Chmielarz, W.; Szumski, O.; Zborowski, M. Kompleksowe Metody Ewaluacji Jakości Serwisów Internetowych; Wydawnictwo Naukowe WZ UW: Warszawa, Poland, 2011. [Google Scholar]
- Buchanan, J.; Sheppard, P.; Vanderpooten, D. Project Ranking Using Electre III. Available online: http://goldenchance.ir/wp-content/uploads/2016/10/580b046cb2a191.717560451477117036.pdf (accessed on 10 July 2020).
- Trzaskalik, T. Wielokryterialne Wspomaganie Decyzji; Polskie Wydawnictwo Ekonomiczne: Warsaw, Poland, 2014. [Google Scholar]
- Likert, R. A Technique for the Measurement of Attitudes; Archives of Psychology: New York, NY, USA, 1932. [Google Scholar]
- Barbrich, P. NetB@nk, Bankowość Internetowa i Mobilna, Płatności Bezgotówkowe, 2 Kwartał 2019. Związek Banków Polskich, Warszawa. Available online: https://www.zbp.pl/getmedia/02918dd2-bf12-4cf7-a70a-09c1a297471c/Report-Netbank_Q2-2019 (accessed on 10 June 2020).
- Chmielarz, W.; Zborowski, M. Ocena e-bankowości i e-płatności w Polsce—Perspektywa klienta. In Roczniki Kolegium Analiz Ekonomicznych/Szkoła Główna Handlowa, nr 49 Społeczno-Ekonomiczne Aspekty Rozwoju Gospodarki Cyfrowej: Koncepcje Zarządzania i Bezpieczeństwa; Szkoła Główna Handlowa: Warsaw, Poland, 2018; pp. 441–453. [Google Scholar]
- Chmielarz, W.; Zborowski, M.; Atasever, M. On Aspects of Internet and Mobile Marketing from Customer Perspective; Springer: Cham, Switzerland, 2020; pp. 27–41. [Google Scholar]
No. | Criterion | Significance for the Respondent TOPSIS | Preference for the Respondent Scoring | Strict Preference for Promethee II Method | Indifference for Promethee II Method |
---|---|---|---|---|---|
Economic | 78.07% | 55.60% | 0.5019 | 0.5633 | |
A1 | Annual nominal interest rate on personal accounts | 74.32% | 5.29% | 0.4822 | 0.5658 |
A2 | Account maintenance PLN/month | 89.03% | 6.34% | 0.5359 | 0.6066 |
A3 | Fee for a transfer to own bank | 88.51% | 6.30% | 0.5497 | 0.6188 |
A4 | Fee for transfer to another bank | 90.24% | 6.43% | 0.5572 | 0.6241 |
A5 | Payment order | 67.19% | 4.78% | 0.4549 | 0.5082 |
A6 | Fee for issuing a debit card | 69.58% | 4.96% | 0.4735 | 0.5360 |
A7 | Monthly fee for a card PLN/month | 88.27% | 6.29% | 0.5584 | 0.6281 |
A8 | Interest rate on savings account | 78.36% | 5.58% | 0.4580 | 0.5036 |
A9 | Interest rate on deposits PLN 10,000 | 69.29% | 4.93% | 0.4403 | 0.4921 |
A10 | Interest rate on loans PLN 10,000 | 65.92% | 4.69% | 0.5088 | 0.5497 |
Technological | 78.33% | 39.05% | 0.5177 | 0.5729 | |
A11 | Additional service | 66.22% | 4.72% | 0.4705 | 0.5379 |
A12 | Account access channels | 82.64% | 5.89% | 0.5132 | 0.5811 |
A13 | Security | 92.72% | 6.60% | 0.5777 | 0.6373 |
A14 | Visualisation | 69.39% | 4.94% | 0.4954 | 0.5336 |
A15 | Navigation | 75.00% | 5.34% | 0.5071 | 0.5596 |
A16 | Readability and user-friendliness | 83.47% | 5.94% | 0.5373 | 0.5880 |
A17 | The scope of functionality | 78.89% | 5.62% | 0.5227 | 0.5725 |
Anti-crisis | 75.14% | 5.35% | 0.0535 | 0.0535 | |
A18 | Anti-crisis measures | 75.14% | 5.35% | 0.5028 | 0.0050 |
Average of group indicators | 77.18% | 33.33% | 35.77% | 39.66% |
A-attributes/C-banks | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.62 | 0.58 | 0.62 | 0.61 | 0.66 | 0.57 | 0.68 | 0.62 | 0.66 | 0.69 | 0.44 | 0.65 |
A2 | 0.75 | 0.65 | 0.83 | 0.80 | 0.71 | 0.74 | 0.62 | 0.65 | 0.73 | 0.78 | 0.76 | 0.86 |
A3 | 0.87 | 0.61 | 0.89 | 0.88 | 0.78 | 0.86 | 0.75 | 0.68 | 0.85 | 0.89 | 0.89 | 0.96 |
A4 | 0.81 | 0.66 | 0.85 | 0.81 | 0.73 | 0.75 | 0.67 | 0.75 | 0.80 | 0.83 | 0.81 | 0.89 |
A5 | 0.76 | 0.55 | 0.79 | 0.79 | 0.72 | 0.73 | 0.64 | 0.68 | 0.81 | 0.77 | 0.70 | 0.81 |
A6 | 0.78 | 0.65 | 0.81 | 0.80 | 0.72 | 0.75 | 0.67 | 0.66 | 0.74 | 0.78 | 0.87 | 0.88 |
A7 | 0.73 | 0.62 | 0.83 | 0.79 | 0.71 | 0.74 | 0.59 | 0.66 | 0.74 | 0.78 | 0.74 | 0.90 |
A8 | 0.65 | 0.61 | 0.64 | 0.62 | 0.57 | 0.55 | 0.71 | 0.62 | 0.58 | 0.62 | 0.53 | 0.70 |
A9 | 0.62 | 0.57 | 0.62 | 0.62 | 0.58 | 0.52 | 0.67 | 0.63 | 0.60 | 0.58 | 0.58 | 0.66 |
A10 | 0.58 | 0.58 | 0.60 | 0.59 | 0.59 | 0.57 | 0.69 | 0.59 | 0.60 | 0.52 | 0.52 | 0.54 |
Economic | 7.19 | 6.07 | 7.48 | 7.31 | 6.76 | 6.79 | 6.68 | 6.54 | 7.12 | 7.24 | 6.83 | 7.84 |
A11 | 0.70 | 0.64 | 0.74 | 0.74 | 0.47 | 0.67 | 0.61 | 0.61 | 0.72 | 0.74 | 0.57 | 0.76 |
A12 | 0.82 | 0.60 | 0.85 | 0.84 | 0.36 | 0.81 | 0.48 | 0.69 | 0.80 | 0.75 | 0.76 | 0.83 |
A13 | 0.80 | 0.74 | 0.82 | 0.82 | 0.60 | 0.75 | 0.64 | 0.68 | 0.83 | 0.74 | 0.73 | 0.82 |
A14 | 0.74 | 0.61 | 0.80 | 0.76 | 0.43 | 0.70 | 0.72 | 0.64 | 0.75 | 0.67 | 0.74 | 0.78 |
A15 | 0.72 | 0.57 | 0.76 | 0.73 | 0.49 | 0.69 | 0.64 | 0.64 | 0.73 | 0.69 | 0.71 | 0.79 |
A16 | 0.76 | 0.60 | 0.80 | 0.77 | 0.57 | 0.74 | 0.80 | 0.72 | 0.73 | 0.69 | 0.80 | 0.83 |
A17 | 0.76 | 0.58 | 0.81 | 0.78 | 0.49 | 0.71 | 0.57 | 0.69 | 0.71 | 0.67 | 0.72 | 0.79 |
Technological | 5.29 | 4.33 | 5.57 | 5.44 | 3.41 | 5.07 | 4.45 | 4.67 | 5.27 | 4.95 | 5.04 | 5.59 |
A18 | 0.68 | 0.58 | 0.71 | 0.66 | 0.57 | 0.62 | 0.36 | 0.63 | 0.66 | 0.59 | 0.63 | 0.62 |
Anti-crisis | 0.68 | 0.58 | 0.71 | 0.66 | 0.57 | 0.62 | 0.36 | 0.63 | 0.66 | 0.59 | 0.63 | 0.62 |
Total | 13.16 | 10.98 | 13.76 | 13.42 | 10.74 | 12.48 | 11.49 | 11.84 | 13.05 | 12.78 | 12.50 | 14.05 |
%% max. score | 73.11% | 61.01% | 76.47% | 74.55% | 59.68% | 69.35% | 63.83% | 65.80% | 72.51% | 71.01% | 69.42% | 78.07% |
A-attributes/C-banks | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 | C21 | C22 | Suma | %% max. score |
A1 | 0.60 | 0.67 | 0.69 | 0.63 | 0.63 | 0.57 | 0.55 | 0.45 | 0.65 | 0.82 | 13.66 | 62.08% |
A2 | 0.76 | 0.81 | 0.94 | 0.84 | 0.84 | 0.83 | 0.74 | 0.76 | 0.78 | 0.78 | 16.95 | 77.04% |
A3 | 0.86 | 0.91 | 1.00 | 0.93 | 0.91 | 0.90 | 0.80 | 0.77 | 0.83 | 0.98 | 18.80 | 85.44% |
A4 | 0.73 | 0.86 | 0.99 | 0.85 | 0.87 | 0.85 | 0.77 | 0.59 | 0.82 | 0.99 | 17.67 | 80.31% |
A5 | 0.65 | 0.81 | 0.89 | 0.80 | 0.78 | 0.73 | 0.72 | 0.80 | 0.78 | 0.81 | 16.54 | 75.18% |
A6 | 0.69 | 0.80 | 0.83 | 0.79 | 0.79 | 0.83 | 0.73 | 0.88 | 0.73 | 0.75 | 16.92 | 76.91% |
A7 | 0.79 | 0.78 | 0.92 | 0.79 | 0.82 | 0.83 | 0.67 | 0.72 | 0.77 | 0.92 | 16.83 | 76.52% |
A8 | 0.53 | 0.67 | 0.63 | 0.58 | 0.64 | 0.57 | 0.57 | 0.52 | 0.77 | 0.75 | 13.61 | 61.86% |
A9 | 0.54 | 0.63 | 0.59 | 0.58 | 0.61 | 0.56 | 0.55 | 0.55 | 0.75 | 0.85 | 13.44 | 61.09% |
A10 | 0.49 | 0.61 | 0.58 | 0.57 | 0.59 | 0.45 | 0.61 | 0.57 | 0.72 | 0.65 | 12.79 | 58.13% |
Economic | 6.63 | 7.56 | 8.05 | 7.34 | 7.49 | 7.11 | 6.70 | 6.59 | 7.60 | 8.29 | ||
A11 | 0.59 | 0.76 | 0.72 | 0.70 | 0.79 | 0.57 | 0.64 | 0.51 | 0.77 | 0.73 | 14.75 | 67.04% |
A12 | 0.75 | 0.83 | 0.78 | 0.87 | 0.90 | 0.69 | 0.72 | 0.68 | 0.65 | 0.54 | 15.99 | 72.70% |
A13 | 0.81 | 0.81 | 0.86 | 0.85 | 0.82 | 0.73 | 0.75 | 0.82 | 0.74 | 0.97 | 17.12 | 77.84% |
A14 | 0.69 | 0.83 | 0.80 | 0.80 | 0.87 | 0.72 | 0.66 | 0.61 | 0.74 | 0.76 | 15.80 | 71.83% |
A15 | 0.57 | 0.78 | 0.86 | 0.80 | 0.81 | 0.72 | 0.66 | 0.69 | 0.73 | 0.72 | 15.49 | 70.42% |
A16 | 0.72 | 0.80 | 0.91 | 0.83 | 0.84 | 0.75 | 0.74 | 0.73 | 0.80 | 0.71 | 16.63 | 75.57% |
A17 | 0.73 | 0.79 | 0.82 | 0.82 | 0.84 | 0.75 | 0.69 | 0.60 | 0.73 | 0.65 | 15.71 | 71.43% |
Technological | 4.85 | 5.58 | 5.74 | 5.69 | 5.88 | 4.93 | 4.87 | 4.64 | 5.15 | 5.08 | ||
A18 | 0.61 | 0.70 | 0.74 | 0.69 | 0.70 | 0.53 | 0.70 | 0.66 | 0.75 | 0.75 | 14.16 | 64.36% |
Anti-crisis | 0.61 | 0.70 | 0.74 | 0.69 | 0.70 | 0.53 | 0.70 | 0.66 | 0.75 | 0.75 | ||
Suma | 12.08 | 13.85 | 14.53 | 13.72 | 14.07 | 12.57 | 12.28 | 11.88 | 13.49 | 14.12 | ||
%% max. score | 67.14% | 76.93% | 80.72% | 76.24% | 78.17% | 69.85% | 68.23% | 66.02% | 74.96% | 78.43% |
Symbol | Bank/Weights with a Predominance of Factors | Technological | Anti-crisis | Economic | Respondent | No Preference |
---|---|---|---|---|---|---|
C1 | Alior Bank (Alior Bank SA) | 11 | 12 | 4 | 22 | 10 |
C2 | Bank BPS Grupa BPS, (Bank Polskiej Spółdzielczości SA) | 10 | 18 | 11 | 21 | 21 |
C3 | Bank Millennium (Bank Millennium SA) | 12 | 21 | 8 | 5 | 6 |
C4 | Bank Pekao (Bank Polska Kasa Opieki SA) | 20 | 11 | 7 | 6 | 9 |
C5 | Bank Pocztowy (Bank Pocztowy SA) | 8 | 8 | 2 | 18 | 22 |
C6 | BGŻ BNP Paribas (Bank BGŻ BNP Paribas SA) | 4 * | 1 | 1 | 13 | 15 |
C7 | BGŻ Optima (Bank BGŻ BNP Paribas SA) | 19 | 2 | 20 | 12 | 20 |
C8 | BOŚ Bank (Bank Ochrony Środowiska SA) | 15 | 13 | 17 | 20 | 19 |
C9 | Citi Handlowy (Citi Handlowy, Bank Handlowy w Warszawie SA) | 13 | 14 | 19 | 11 | 11 |
C10 | Credit Agricole (Credit Agricole Bank Polska SA) | 5 | 6 | 9 | 9 | 12 |
C11 | Eurobank (Euro Bank SA) | 17 | 4 | 12 | 17 | 14 |
C12 | Get In Bank (Getin Noble Bank SA) | 7 | 15 | 16 | 2 | 4 |
C13 | Idea Bank (Idea Bank SA) | 1 | 3 | 6 | 16 | 17 |
C14 | ING, ING Bank Śląski (ING Bank Śląski SA) | 22 | 9 | 3 | 15 | 5 |
C15 | INTELIGO, PKO Bank Polski (Bank Polski SA) | 21 | 10 | 10 | 1 | 1 |
C16 | iPKO, PKO Bank Polski (Bank Polski SA) | 6 | 22 | 13 | 10 | 7 |
C17 | mBank (mBank SA) | 9 | 5 | 15 | 4 | 3 |
C18 | Nest Bank (Nest Bank SA) | 2 | 7 | 21 | 8 | 13 |
C19 | Raiffeisen POLBANK (Bank BGŻ BNP Paribas SA) | 3 | 17 | 18 | 14 | 16 |
C20 | SGB Spółdzielcza Grupa Bankowa (Spółdzielcza Grupa Bankowa SA) | 16 | 16 | 5 | 19 | 18 |
C21 | T-Mobile Usługi Bankowe (Alior Bank SA) | 14 | 19 | 22 | 7 | 8 |
C22 | Toyota Bank Polska SA (Toyota Bank Polska SA) | 18 | 20 | 14 | 3 | 2 |
No | Bank/Place in the Ranking According to a Method | Scoring Method without Preference | Scoring Method with Weights | Conversion Method | Promethee II without Preferences | Promethee with Weights | PROSA | TOPSIS without Preference | TOPSIS with Weights | Total |
---|---|---|---|---|---|---|---|---|---|---|
C1 | INTELIGO, PKO Bank Polski (Bank Polski SA) | 1 | 5 | 6 | 1 | 1 | 1 | 1 | 1 | 17 |
C2 | mBank (mBank SA) | 3 | 6 | 2 | 2 | 5 | 2 | 3 | 2 | 25 |
C4 | ING, ING Bank Śląski (ING Bank Śląski SA) | 5 | 22 | 3 | 4 | 3 | 4 | 4 | 4 | 49 |
C3 | Toyota Bank Polska SA (Toyota Bank Polska SA) | 2 | 13 | 9 | 7 | 2 | 7 | 5 | 5 | 50 |
C5 | Get In Bank (Getin Noble Bank SA) | 4 | 21 | 11 | 3 | 4 | 3 | 2 | 3 | 51 |
C6 | iPKO, PKO Bank Polski (Bank Polski SA) | 7 | 18 | 7 | 6 | 6 | 6 | 7 | 7 | 64 |
C8 | Bank Millennium (Bank Millennium SA) | 6 | 11 | 20 | 5 | 7 | 5 | 6 | 6 | 66 |
C7 | T-Mobile Usługi Bankowe (Alior Bank SA) | 8 | 12 | 5 | 9 | 9 | 9 | 9 | 8 | 69 |
C10 | Bank Pekao (Bank Polska Kasa Opieki SA) | 9 | 9 | 18 | 8 | 8 | 8 | 8 | 9 | 77 |
C9 | Citi Handlowy (Citi Handlowy, Bank Handlowy w Warszawie SA) | 11 | 2 | 13 | 11 | 11 | 11 | 11 | 11 | 81 |
C11 | Credit Agricole (Credit Agricole Bank Polska SA) | 12 | 1 | 17 | 12 | 12 | 12 | 12 | 12 | 90 |
C12 | Raiffeisen POLBANK (Bank BGŻ BNP Paribas SA) | 16 | 4 | 1 | 16 | 16 | 16 | 16 | 16 | 101 |
C14 | Alior Bank (Alior Bank SA) | 10 | 20 | 22 | 10 | 10 | 10 | 10 | 10 | 102 |
C13 | Nest Bank (Nest Bank SA) | 13 | 15 | 8 | 13 | 18 | 13 | 13 | 14 | 107 |
C15 | BGŻ BNP Paribas (Bank BGŻ BNP Paribas SA) | 15 | 10 | 15 | 15 | 13 | 15 | 14 | 13 | 110 |
C17 | Eurobank (Euro Bank SA) | 14 | 16 | 12 | 14 | 17 | 14 | 15 | 15 | 117 |
C16 | Idea Bank (Idea Bank SA) | 17 | 8 | 10 | 19 | 14 | 17 | 17 | 17 | 119 |
C18 | SGB Spółdzielcza Grupa Bankowa (Spółdzielcza Grupa Bankowa SA) | 18 | 17 | 4 | 18 | 20 | 18 | 19 | 19 | 133 |
C19 | BGŻ Optima (Bank BGŻ BNP Paribas SA) | 20 | 3 | 14 | 17 | 21 | 20 | 20 | 20 | 135 |
C20 | BOŚ Bank (Bank Ochrony Środowiska SA) | 19 | 14 | 16 | 20 | 15 | 19 | 18 | 18 | 139 |
C21 | Bank Pocztowy (Bank Pocztowy SA) | 22 | 7 | 19 | 21 | 22 | 21 | 22 | 22 | 156 |
C22 | Bank BPS Grupa BPS, (Bank Polskiej Spółdzielczości SA) | 21 | 19 | 21 | 22 | 19 | 22 | 21 | 21 | 166 |
Comparison Methods Pairs | City-Block Distance (Sum of Absolute Values) | Fisher-Snedeckor Test α >p = 2.084 | Significance |
---|---|---|---|
Scoring without and preferences | 172 | 0.7131 | Y |
Scoring without preferences and conversion method | 122 | 0.0047 | Y |
Scoring without preferences and Promethee II with preferences | 20 | 0.1825 | Y |
Scoring without preferences and Promethee II without preferences | 30 | 0.1933 | Y |
Scoring without preferences and PROSA | 14 | 0.0170 | Y |
Scoring without preferences and TOPSIS without preferences | 12 | 0.0174 | Y |
Scoring without preferences and TOPSIS with preferences | 12 | 2.0160 | Y |
Scoring with preferences and conversion method | 164 | 0.0066 | Y |
Scoring with preferences and Promethee II without preferences | 172 | 0.2560 | Y |
Scoring with preferences and Promethee II with preferences | 164 | 0.2711 | Y |
Scoring with preferences and PROSA | 172 | 0.0239 | Y |
Scoring with preferences and TOPSIS without preferences | 170 | 0.0245 | Y |
Scoring with preferences and TOPSIS with preferences | 168 | 28273 | N |
Conversion method and Promethee II with preferences | 118 | 38,7582 | N |
Conversion method and Promethee II without preferences | 134 | 41,0507 | N |
Conversion method and PROSA | 120 | 36160 | N |
Conversion method and TOPSIS without preferences | 124 | 37035 | N |
Conversion method and TOPSIS with preferences | 122 | 428,1083 | N |
Promethee II without and with preferences | 42 | 10591 | Y |
Promethee II without preferences and PROSA | 6 | 0.0933 | Y |
Promethee II without preferences and TOPSIS with preferences | 18 | 0.0956 | Y |
Promethee II without preferences and TOPSIS without preferences | 20 | 11,0456 | N |
Promethee II with preferences and PROSA | 36 | 0.0881 | Y |
Promethee II with preferences and TOPSIS without preferences | 28 | 0.0902 | Y |
Promethee II with preferences and TOPSIS with preferences | 28 | 10,4288 | N |
PROSA and TOPSIS without preferences | 12 | 10242 | Y |
PROSA and TOPSIS with preferences | 14 | 118,3914 | N |
TOPSIS without and with preferences | 6 | 115,5951 | N |
Features of the Method Which Are Significant for the Client | Scoring Method without Preferences | Scoring Method with Preferences | Conversion Method | Promethee II without Preferences | Promethee with Preferences | PROSA | TOPSIS without Preferences | TOPSIS with Preferences |
---|---|---|---|---|---|---|---|---|
No requirement of advanced knowledge to apply the method | 1 | 1 | 1 | 0.75 | 0.75 | 0.5 | 1 | 0.75 |
The convenience of collecting basic data | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.75 |
No need to estimate additional parameters | 1 | 0.75 | 1 | 0.75 | 0.5 | 0.5 | 0.75 | 0.75 |
Easy calculation for analysis | 1 | 1 | 0.5 | 0,5 | 0.5 | 0.5 | 0.75 | 0.75 |
No need to use specialized calculation software | 1 | 1 | 0,5 | 0,5 | 0.5 | 0.5 | 0.75 | 0.75 |
Methodical correctness | 0,5 | 0,5 | 1 | 1 | 1 | 1 | 1 | 1 |
The ease of making extensive analyzes | 1 | 1 | 0.75 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 |
Reliability of results | 0,75 | 0,75 | 1 | 0.75 | 1 | 1 | 1 | 1 |
Total | 7.25 | 7.00 | 6.75 | 5.75 | 5.75 | 5.50 | 7.00 | 6.50 |
%% of the share in maximum possible score | 90.63% | 93.75% | 84.38% | 71.88% | 71.88% | 68.75% | 87.50% | 81.25% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielarz, W.; Zborowski, M. Towards Sustainability in E-Banking Website Assessment Methods. Sustainability 2020, 12, 7000. https://doi.org/10.3390/su12177000
Chmielarz W, Zborowski M. Towards Sustainability in E-Banking Website Assessment Methods. Sustainability. 2020; 12(17):7000. https://doi.org/10.3390/su12177000
Chicago/Turabian StyleChmielarz, Witold, and Marek Zborowski. 2020. "Towards Sustainability in E-Banking Website Assessment Methods" Sustainability 12, no. 17: 7000. https://doi.org/10.3390/su12177000
APA StyleChmielarz, W., & Zborowski, M. (2020). Towards Sustainability in E-Banking Website Assessment Methods. Sustainability, 12(17), 7000. https://doi.org/10.3390/su12177000