Agroforestry Benefits and Challenges for Adoption in Europe and Beyond
Abstract
:1. Introduction
2. Benefits of AFS
2.1. Agronomic Productivity
2.2. Soil Carbon Sequestration
2.3. Nutrient Cycling
2.4. Soil Biodiversity
2.5. Soil Erosion and Water Retention
2.6. Recreation and Culture
2.7. Pest and Disease Control
2.8. Fire Prevention
2.9. Pollination
3. Opportunities and Challenges for Agroforestry in Europe
3.1. High Costs for Implementation
3.2. Inadequate Financial Incentives
3.3. Products and Marketing
3.4. Education and Awareness
3.5. Field Demonstrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. Bioscience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Vesterdal, L.; Porter, J.R. Quantification and valuation of ecosystem services in diverse production systems for informed decision-making. Environ. Sci. Policy 2014, 39, 139–149. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Janssens, I.A.; Freibauer, A.; Schlamadinger, B.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Heimann, M.; Nabuurs, G.-J.; Smith, P.; Valentini, R. The carbon budget of terrestrial ecosystems at country-scale—A European case study. Biogeosci. Discuss. 2005, 1, 167–193. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Mismanagement of Cultivated Lands. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; p. 10. [Google Scholar] [CrossRef]
- Usman, M.; Ibrahim, F.; Oyetola, S.O. Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. Int. J. Res. Agric. Food Sci. 2018, 4, 1–17. [Google Scholar]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. A European perspective for developing modern multifunctional agroforestry systems for sustainable intensification. Renew. Agric. Food Syst. 2012, 27, 323–332. [Google Scholar] [CrossRef]
- Ilany, T.; Ashton, M.S.; Montagnini, F.; Martínez, C. Using agroforestry to improve soil fertility: Effects of intercropping on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agrofor. Syst. 2010, 80, 399–409. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.A.; Bustamante, M.M.C. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Mosquera-Losada, M.; Santiago-Freijanes, J.; Rois-Díaz, M.; Moreno, G.; Herder, M.D.; Aldrey-Vázquez, J.; Ferreiro-Domínguez, N.; Pantera, A.; Pisanelli, A.; Rigueiro-Rodríguez, A. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 2018, 78, 603–613. [Google Scholar] [CrossRef]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- McAdam, J.H.; Burgess, P.J.; Graves, A.; Rigueiro-Rodríguez, A. Classifications and Functions of Agroforestry Systems in Europe. In Agroforestry in Europe: Current Status and Future Propspects; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 21–41. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- FAO. Guidelines: Land Evaluation for Rainfed Agriculture, Soils Bulletin 55; FAO: Rome, Italy, 1985. [Google Scholar]
- Malezieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidell, B.; de Tourdonnet, S.; Valentin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models: A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.T.; Dupraz, C.; Gold, M.; Jose, S.; Revord, R.; Stanek, E.; Wolz, K.J. Temperate agroforestry research: Considering multifunctional woody polycultures and the design of long-term field trials. Agrofor. Syst. 2017, 92, 1397–1415. [Google Scholar] [CrossRef]
- Xu, Y.; Lehmann, L.M.; De Jalón, S.G.; Ghaley, B.B. Assessment of Productivity and Economic Viability of Combined Food and Energy (CFE) Production System in Denmark. Energies 2019, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, L.M.; Borzecka-Walker, M.; Żyłowska, K.; Pisanelli, A.; Russo, G.; Ghaley, B.B. Environmental Impact Assessments of Integrated Food and Non-Food Production Systems in Italy and Denmark. Energies 2020, 13, 849. [Google Scholar] [CrossRef] [Green Version]
- García De Jalón, S.; Burgess, P.J.; Graves, A.; Moreno, G.; McAdam, J.; Pottier, E.; Novak, S.; Bondesan, V.; Mosquera-Losada, M.; Crous-Duran, J.; et al. How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agrofor. Syst. 2018, 92, 829–848. [Google Scholar] [CrossRef] [Green Version]
- Sereke, F.; Graves, A.R.; Dux, D.; Palma, J.; Herzog, F. Innovative agroecosystem goods and services: Key profitability drivers in Swiss agroforestry. Agron. Sustain. Dev. 2014, 35, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Trozzo, K.E.; Munsell, J.F.; Chamberlain, J.L. Landowner interest in multifunctional agroforestry Riparian buffers. Agrofor. Syst. 2014, 88, 619–629. [Google Scholar] [CrossRef]
- Rois-Díaz, M.; Lovrić, N.; Lovric, M.; Ferreiro-Domínguez, N.; Mosquera-Losada, M.; Herder, M.D.; Graves, A.; Palma, J.; Paulo, J.A.; Pisanelli, A.; et al. Farmers’ reasoning behind the uptake of agroforestry practices: Evidence from multiple case-studies across Europe. Agrofor. Syst. 2017, 92, 811–828. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Dawson, T.P.; MacDiarmid, J.I.; Matthews, R.; Smith, P. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. Int. J. Agric. Sustain. 2017, 15, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aertsens, J.; De Nocker, L.; Gobin, A. Valuing the carbon sequestration potential for European agriculture. Land Use Policy 2013, 31, 584–594. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef] [Green Version]
- Ghaley, B.B.; Porter, J.R. Ecosystem function and service quantification and valuation in a conventional winter wheat production system with DAISY model in Denmark. Ecosyst. Serv. 2014, 10, 79–83. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 2017, 247, 98–111. [Google Scholar] [CrossRef]
- Bambrick, A.D.; Whalen, J.K.; Bradley, R.L.; Cogliastro, A.; Gordon, A.M.; Olivier, A.; Thevathasan, N.V. Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor. Syst. 2010, 79, 343–353. [Google Scholar] [CrossRef]
- Bazrgar, A.; Ng, A.; Coleman, B.; Ashiq, M.W.; Gordon, A.; Thevathasan, N.V. Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada. Sustainability 2020, 12, 3901. [Google Scholar] [CrossRef]
- Kay, S.; Graves, A.; Palma, J.H.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; De Jalón, S.G.; et al. Agroforestry is paying off—Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef] [Green Version]
- Mosquera-Losada, M.R.; Santiago Freijanes, J.J.; Pisanelli, A.; Rois, M.; Smith, J.; den Herder, M.; Moreno, G.; Malignier, N.; Mirazo, J.; Lamersdorf, N.; et al. Extent and Success of Current Policy Measures to Promote Agroforestry across Europe, Deliverable 8.23 for EU FP7 Research Project: AGFORWARD 613520. 2016. Available online: https://www.agforward.eu/index.php/en/extent-and-success-of-current-policy-measures-to-promote-agroforestry-across-europe.html?file=files/agforward/documents/Deliverable8.23Extent_and_Success_of_Current_Policy_Measures_8_Dec_2016.pdf (accessed on 25 August 2020).
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Giraldo, C.; Escobar, F.; Chara, J.; Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv. Divers. 2010, 4, 115–122. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kirschbaum, M.U.; Beedy, T.L. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [Google Scholar] [CrossRef]
- Negash, M.; Kanninen, M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agric. Ecosyst. Environ. 2015, 203, 147–155. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Freese, D.; Rigueiro-Rodríguez, A. Carbon Sequestration in European Agroforestry Systems; Springer: Dordrencht, The Netherlands, 2011; pp. 43–59. [Google Scholar] [CrossRef] [Green Version]
- Dossa, E.L.; Fernandes, E.C.M.; Reid, W.S.; Ezui, K. Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor. Syst. 2008, 72, 103–115. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Holscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. of App. Eco. 2011, 48, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.K.R. Agroforestry Systems and Environmental Quality: Introduction. J. Environ. Qual. 2011, 40, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivest, D.; Lorente, M.; Olivier, A.; Messier, C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013, 463, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Jose, S.; Gillespie, A.; Pallardy, S. Interspecific interactions in temperate agroforestry. Agrofor. Syst. 2004, 61–62, 237–255. [Google Scholar] [CrossRef]
- Thevathasan, N.; Gordon, A. Ecology of tree intercropping systems in the North temperate region: Experiences from southern Ontario, Canada. Agrofor. Syst. 2004, 61–62, 257–268. [Google Scholar] [CrossRef]
- Zhang, P. The Impact of Nutrient Inputs from Stemflow, Throughfall, and Litterfall in a Tree-Based Temperate Intercrop-Ping System, Southern ON, Canada. Master’s Thesis, Department of Environmental Biology, University of Guelph, Guelph, ON, Canada, 1999. [Google Scholar]
- Torralba, M.; Fagerholm, N.; Burgess, P.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Swieter, A.; Langhof, M.; Lamerre, J.; Greef, J.M. Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agrofor. Syst. 2018, 93, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Xu, H.; Bi, H.; Xi, W.; Bao, B.; Wang, X.; Bi, C.; Chang, Y. Intercropping Competition between Apple Trees and Crops in Agroforestry Systems on the Loess Plateau of China. PLoS ONE 2013, 8, e70739. [Google Scholar] [CrossRef] [PubMed]
- Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing Light Competition for Cereal Production in Temperate Agroforestry Systems using Experimentation and Crop Modelling. J. Agron. Crop. Sci. 2012, 199, 217–227. [Google Scholar] [CrossRef]
- Palma, J.; Graves, A.; Burgess, P.J.; Van Der Werf, W.; Herzog, F. Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecol. Econ. 2007, 63, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Bender, S.F.; Widmer, F.; Van Der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibblewhite, M.; Ritz, K.; Swift, M. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 685–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, D.C.; Crossley, D.; Hendrix, P.F. Fundamentals of Soil Ecology, 2nd ed.; Elsevier BV: Burlington, NJ, USA, 2004. [Google Scholar]
- Havlicek, E.; Mitchell, E.A.D. Soils Suppressing Biodiversity. In Interactions in Soil: Promoting Plant Growth; John, D., Jennifer, A.K., Eds.; Springer: Dordrecht, The Netherland, 2014; pp. 95–118. [Google Scholar]
- Barrios, E.; Sileshi, G.W.; Shepherd, K.D.; Sinclair, F. Agroforestry and Soil Health: Linking Trees, Soil Biota, and Ecosystem Services. In Soil Ecology and Ecosystem Services; Diana, H.W., Richard, D.B., Valerie, B.-P., Jeffrey, E.H., Hefin, J.T., Eds.; Oxford University Press (OUP): Oxford, UK, 2012. [Google Scholar]
- Udawatta, R.P.; Kremer, R.J.; Adamson, B.W.; Anderson, S.H. Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl. Soil Ecol. 2008, 39, 153–160. [Google Scholar] [CrossRef]
- Lacombe, S.; Bradley, R.L.; Hamel, C.; Beaulieu, C. Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric. Ecosyst. Environ. 2009, 131, 25–31. [Google Scholar] [CrossRef]
- Chifflot, V.; Rivest, D.; Olivier, A.; Cogliastro, A.; Khasa, D. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agric. Ecosyst. Environ. 2009, 131, 32–39. [Google Scholar] [CrossRef]
- Schädler, M.; Brandl, R.; Kempel, A. “Afterlife” effects of mycorrhization on the decomposition of plant residues. Soil Biol. Biochem. 2010, 42, 521–523. [Google Scholar] [CrossRef]
- Marsden, C.; Martin-Chave, A.; Cortet, J.; Hedde, M.; Capowiez, Y. How agroforestry systems influence soil fauna and their functions—A review. Plant Soil 2019, 1–16. [Google Scholar] [CrossRef]
- Freedman, A.J.; Tan, B.; Thompson, J.R. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir. Environ. Microbiol. 2017, 19, 2228–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dollinger, J.; Jose, S. Agroforestry for soil health. Agrofor. Syst. 2018, 92, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.K.R.; Buresh, R.J.; Mugendi, D.N.; Latt, C.R. Nutrient cycling in tropical agroforestry systems: Myths and science. In Agroforestry in Sustainable Agricultural Systems; Buck, L.E., Lassoie, J.P., Fernandez, E.C.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 1–31. [Google Scholar] [CrossRef]
- Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, A.S.F.; Leite, L.F.C.; Iwata, B.D.F.; Lira, M.D.A.; Xavier, G.R.; Figueiredo, M.D.V.B. Microbiological process in agroforestry systems. A review. Agron. Sustain. Dev. 2011, 32, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Bainard, L.D.; Klironomos, J.N.; Gordon, A.M. Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia 2011, 54, 57–61. [Google Scholar] [CrossRef]
- Rintoul, N. Arbuscular mycorrhizal associations in plant nutrition and health. CAB Rev. Perspect. Agric. Veter-Sci. Nutr. Nat. Resour. 2016, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2012, 22, 737–749. [Google Scholar] [CrossRef]
- Cardinael, R.; Hoeffner, K.; Chenu, C.; Chevallier, T.; Béral, C.; Dewisme, A.; Cluzeau, D. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol. Fertil. Soils 2018, 55, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Price, G.W.; Gordon, A.M. Spatial and temporal distribution of earthworms in a temperate intercropping system in southern Ontario, Canada. Agrofor. Syst. 1998, 44, 141–149. [Google Scholar] [CrossRef]
- Mupeyo, B.; Barry, T.; Pomroy, W.E.; Ramírez-Restrepo, C.; Lopez-Villalobos, N.; Pernthaner, A. Effects of feeding willow (Salix spp.) upon death of established parasites and parasite fecundity. Anim. Feed Sci. Technol. 2011, 164, 8–20. [Google Scholar] [CrossRef]
- Banerjee, S.; Baah-Acheamfour, M.; Carlyle, C.N.; Bissett, A.; Richardson, A.E.; Siddique, T.; Bork, E.W.; Chang, S.X. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 2015, 18, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Beuschel, R.; Piepho, H.-P.; Joergensen, R.G.; Wachendorf, C. Correction to: Similar spatial patterns of soil quality indicators in three poplar-based silvo-arable alley cropping systems in Germany. Biol. Fertil. Soils 2018, 55, 15–16. [Google Scholar] [CrossRef] [Green Version]
- Beule, L.; Corre, M.D.; Schmidt, M.; Göbel, L.; Veldkamp, E.; Karlovsky, P. Conversion of monoculture cropland and open grassland to agroforestry alters the abundance of soil bacteria, fungi and soil-N-cycling genes. PLoS ONE 2019, 14, e0218779. [Google Scholar] [CrossRef]
- Dosskey, M.G. Toward Quantifying Water Pollution Abatement in Response to Installing Buffers on Crop Land. Environ. Manag. 2001, 28, 577–598. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Krstansky, J.J.; Henderson, G.S.; Garrett, H.E. Agroforestry Practices, Runoff, and Nutrient Loss. J. Environ. Qual. 2002, 31, 1214–1225. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Garrett, H.E.; Kallenbach, R.L. Agroforestry and grass buffer effects on water quality in grazed pastures. Agrofor. Syst. 2010, 79, 81–87. [Google Scholar] [CrossRef]
- Sepúlveda, R.B.; Carrillo, A.A. Soil erosion and erosion thresholds in an agroforestry system of coffee (Coffea arabica) and mixed shade trees (Inga spp. and Musa spp.) in Northern Nicaragua. Agric. Ecosyst. Environ. 2015, 210, 25–35. [Google Scholar] [CrossRef]
- Mutegi, J.K.; Mugendi, D.N.; Verchot, L.V.; Kung’U, J.B. Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops. Agrofor. Syst. 2008, 74, 37–49. [Google Scholar] [CrossRef]
- Carroll, Z.; Bird, S.; Emmett, B.; Reynolds, B.; Sinclair, F. Can tree shelterbelts on agricultural land reduce flood risk? Soil Use Manag. 2006, 20, 357–359. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Garrity, D. Agroforestry—The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Sajjapongse, A.; Zhu, Q.; Chen, Y.; Wang, H. Development of sustainable agriculture on sloping lands in China. In Proceedings of the 12th ISCO Conference, Bejing, China, 26–31 May 2002; pp. 335–341. [Google Scholar]
- Budelman, A. The performance of selected leaf mulches in temperature reduction and moisture conservation in the upper soil stratum. Agrofor. Syst. 1989, 8, 53–66. [Google Scholar] [CrossRef]
- Schwendenmann, L.; Veldkamp, E.; Moser, G.; Hölscher, D.; Köhler, M.; Clough, Y.; Anas, I.; Djajakirana, G.; Erasmi, S.; Hertel, D.; et al. Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob. Chang. Biol. 2010, 16, 1515–1530. [Google Scholar] [CrossRef]
- Moberg, F. Jordbruket vid ett Vägskäl: Hur får vi Maten och Planetens Resurser att Räcka Till Alla? Svenska Sammanfattning av Studien IAASTD. 2011. Available online: https://www.naturskyddsforeningen.se/sites/default/files/dokument-media/jordbruket_vid_ett_vagskal_-_iaastd.pdf (accessed on 25 August 2020).
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; De Jalón, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.; et al. Agroforestry systems of high nature and cultural value in Europe: Provision of commercial goods and other ecosystem services. Agrofor. Syst. 2017, 92, 877–891. [Google Scholar] [CrossRef] [Green Version]
- Ispikoudis, I.; Sioliou, K.M. Cultural aspects of silvopastoral systems. In Silvopastoralism and Sustainable Management; Mosquera-Losada, M.R., McAdam, J., Rigueiro-Rodríguez, A., Eds.; CABI Publishing: Wallingford, CT, USA, 2005. [Google Scholar] [CrossRef]
- Papanastasis, V.P.; Mantzanas, K.; Dini-Papanastasi, O.; Ispikoudis, I. Traditional Agroforestry Systems and Their Evolution in Greece. In Advances in Agroforestry; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Berlin, Germany, 2008; pp. 89–109. [Google Scholar] [CrossRef]
- Vera, F.W.M. Grazing Ecology and Forest History; CABI: Wallingford, UK, 2000. [Google Scholar]
- Barbieri, C.; Valdivia, C. Recreation and agroforestry: Examining new dimensions of multifunctionality in family farms. J. Rural Stud. 2010, 26, 465–473. [Google Scholar] [CrossRef]
- Pardini, A. Agroforestry Systems in Italy: Traditions Towards Modern Management. In Advances in Agroforestry; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 6, pp. 255–267. [Google Scholar]
- Smith, J. Agroforestry: Reconciling Production with Protection of the Environment; The Organic Research Centre: Berkshire, MA, USA, 2010. [Google Scholar]
- Mäntymaa, E.; Ovaskainen, V.; Juutinen, A.; Tyrväinen, L. Integrating nature-based tourism and forestry in private lands under heterogeneous visitor preferences for forest attributes. J. Environ. Plan. Manag. 2017, 61, 724–746. [Google Scholar] [CrossRef]
- Pantera, A.; Papadopoulos, A.; Papanastasis, V.P. Valonia oak agroforestry systems in Greece: An overview. Agrofor. Syst. 2018, 92, 921–931. [Google Scholar] [CrossRef]
- Dudek, T. Influence of selected features of forests on forest landscape aesthetic value—Example of se poland. J. Environ. Eng. Landsc. Manag. 2018, 26, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Isted, R. Wood pasture and parkland; overlooked jewels of the English countryside. In S Silvopastoralism and Sustainable Management Mosquera-Losada; Rigueiro-Rodríguez, M.R., McAdam, A.J., Eds.; CABI Publishing: Wallingford, CT, USA, 2005. [Google Scholar] [CrossRef]
- Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D’Amore, M. Environmental and economic costs of pesticide use. BioScience 1992, 42, 750–760. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Cornejo, J.; Nehring, R.F.; Sinha, E.N.; Grube, A.; Vialou, A. Assessing Recent Trends in Pesticide Use in US Agriculture. In Proceedings of the Annual Meeting of the Agricultural and Applied Economics Association (AAEA), Milwaukee, WI, USA, 26–28 July 2009. [Google Scholar]
- Rossman, A.Y. The impact of invasive fungi on agricultural ecosystems in the United States. Biol. Invasions 2008, 11, 97–107. [Google Scholar] [CrossRef]
- Chaplin, R.E.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Booij, C.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losey, J.E.; Vaughan, M. The Economic Value of Ecological Services Provided by Insects. Bioscience 2006, 56, 311. [Google Scholar] [CrossRef] [Green Version]
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015, 16, 573–582. [Google Scholar] [CrossRef]
- Stamps, W.T.; Linit, M.J. Plant diversity and arthropod communities: Implications for temperate agroforestry. Agrofor. Syst. 1997, 39, 73–89. [Google Scholar] [CrossRef]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2011, 32, 273–303. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.; Schroth, G.; Rao, M.; Girma, H. Weeds, Diseases, Insect Pests, and Tri-Trophic Interactions in Tropical Agroforestry. In Ecological Basis of Agroforestry; Batish, D.R., Kohli, R.K., Jose, S., Singh, H.P., Eds.; CRC Press: London, UK, 2008; pp. 73–94. [Google Scholar]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Montoya-Lerma, J.; Carmona, E.J.; Daza, M.C.; Escobar-Ramírez, S.; Galindo, V.; Gutiérrez, C.; López, S.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 2012, 28, 80–92. [Google Scholar] [CrossRef]
- Wilson, M.; Lovell, S.T. Agroforestry—The Next Step in Sustainable and Resilient Agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Martin-Chave, A.; Béral, C.; Capowiez, Y. Agroforestry has an impact on nocturnal predation by ground beetles and Opiliones in a temperate organic alley cropping system. Biol. Control 2019, 129, 128–135. [Google Scholar] [CrossRef]
- Iverson, A.; Marín, L.E.; Ennis, K.K.; Gonthier, D.J.; Connor-Barrie, B.T.; Remfert, J.L.; Cardinale, B.J.; Perfecto, I. REVIEW: Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 2014, 51, 1593–1602. [Google Scholar] [CrossRef]
- Beule, L.; Lehtsaar, E.; Rathgeb, A.; Karlovsky, P. Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability 2019, 11, 2925. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Artru, S.; Garré, S.; Dupraz, C.; Hiel, M.-P.; Blitz-Frayret, C.; Lassois, L. Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. Eur. J. Agron. 2017, 82, 60–70. [Google Scholar] [CrossRef]
- Schroth, G.; Krauss, U.; Gasparotto, L.; Aguilar, J.A.D.; Vohland, K. Pests and diseases in agroforestry systems of the humid tropics. Agrofor. Syst. 2000, 50, 199–241. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Pfeiffer, H.; et al. Forest Fires in Europe, Middle East and North Africa; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Damianidis, C.; Santiago-Freijanes, J.J.; Herder, M.D.; Burgess, P.; Mosquera-Losada, M.R.; Graves, A.; Papadopoulos, A.; Pisanelli, A.; Camilli, F.; Rois-Díaz, M.; et al. Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas. Agrofor. Syst. 2020, 1–11. [Google Scholar] [CrossRef]
- Dupraz, C.; Lawson, G.J.; Lamersdorf, N.; Papanastasis, V.P.; Rosati, A.; Ruiz-Mirazo, J. Temperate agroforestry: The European way. In Temperate Agroforestry Systems, 2nd ed; Gordon, A.M., Newman, S.M., Coleman, B., Eds.; CABI: Wallingford, UK, 2018; pp. 98–152. [Google Scholar]
- Santiago-Freijanes, J.; Pisanelli, A.; Rois-Díaz, M.; Aldrey-Vázquez, J.; Rigueiro-Rodríguez, A.; Pantera, A.; Vityi, A.; Lojka, B.; Ferreiro-Domínguez, N.; Mosquera-Losada, M. Agroforestry development in Europe: Policy issues. Land Use Policy 2018, 76, 144–156. [Google Scholar] [CrossRef]
- Ingram, M.; Nabhan, G.C.; Buchmann, S.L. Impending pollination crisis threatens biodiversity and agriculture. Tropine 1996, 7, 1. [Google Scholar]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.; E Vaissière, B.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2006, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormerod, S.J.; Marshall, E.; Kerby, G.; Rushton, S. Meeting the ecological challenges of agricultural change: Editors’ introduction. J. Appl. Ecol. 2003, 40, 939–946. [Google Scholar] [CrossRef]
- Attwood, S.J.; Maron, M.; House, A.P.N.; Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob. Ecol. Biogeogr. 2008, 17, 585–599. [Google Scholar] [CrossRef]
- IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Enhanced biodiversity and pollination in UK agroforestry systems. J. Sci. Food Agric. 2013, 93, 2073–2075. [Google Scholar] [CrossRef]
- Bentrup, G.; Hopwood, J.; Adamson, N.L.; Vaughan, M. Temperate Agroforestry Systems and Insect Pollinators: A Review. Forests 2019, 10, 981. [Google Scholar] [CrossRef] [Green Version]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Temperate agroforestry systems provide greater pollination service than monoculture. Agric. Ecosyst. Environ. 2020, 301, 107031. [Google Scholar] [CrossRef]
- Kay, S.; Kühn, E.; Albrecht, M.; Sutter, L.; Szerencsits, E.; Herzog, F. Agroforestry can enhance foraging and nesting resources for pollinators with focus on solitary bees at the landscape scale. Agrofor. Syst. 2020, 94, 379–387. [Google Scholar] [CrossRef]
- Staton, T.; Walters, R.J.; Smith, J.; Girling, R. Evaluating the effects of integrating trees into temperate arable systems on pest control and pollination. Agric. Syst. 2019, 176, 102676. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.; Moreno, G.; Pardini, A.; McAdam, J.H.; Papanastasis, V.; Burgess, P.J.; Lamersdorf, N.; Castro, M.; Liagre, F.; Rigueiro-Rodríguez, A. Past, Present and Future of Agroforestry Systems in Europe. In Advances in Agroforestry; Nair, P., Garrity, D., Eds.; Springer: Dordrencht, The Netherlands, 2012; Volume 9, pp. 285–312. [Google Scholar]
- Marais, Z.E.; Baker, T.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forest 2019, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Ofori, D.; Gyau, A.; Dawson, I.K.; Asaah, E.; Tchoundjeu, Z.; Jamnadass, R. Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Curr. Opin. Environ. Sustain. 2014, 6, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Mantino, A.; Volpi, I.; Micci, M.; Pecchioni, G.; Bosco, S.; Dragoni, F.; Mele, M.; Ragaglini, G. Effect of Tree Presence and Soil Characteristics on Soybean Yield and Quality in an Innovative Alley-Cropping System. Agronomy 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.E.; Borden, K.A. Nutrient acquisition strategies in agroforestry systems. Plant Soil 2019, 444, 1–19. [Google Scholar] [CrossRef]
- Rahman, S.A.; Baral, H.; Sharma, R.; Samsudin, Y.B.; Meyer, M.; Lo, M.; Artati, Y.; Simamora, T.I.; Andini, S.; Leksono, B.; et al. Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes. Food Energy Secur. 2019, 8, e00165. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Panagos, P.; Imeson, A.; Meusburger, K.; Borrelli, P.; Poesen, J.; Alewell, C. Soil Conservation in Europe: Wish or Reality? Land Degrad. Dev. 2016, 27, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Morcillo, M.; Burgess, P.J.; Mirck, J.; Pantera, A.; Plieninger, T. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environ. Sci. Policy 2018, 80, 44–52. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Liagre, F.; Dupraz, C. Farmer perception of benefits, constraints and opportunities for silvoarable systems. Outlook Agric. 2017, 46, 74–83. [Google Scholar] [CrossRef]
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable Systems in Europe—Past, Present and Future Prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Milder, J.C.; Scherr, S.J.; Bracer, C. Trends and Future Potential of Payment for Ecosystem Services to Alleviate Rural Poverty in Developing Countries. Ecol. Soc. 2010, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Van Vooren, L.; Reubens, B.; Broekx, S.; Pardon, P.; Reheul, D.; Van Winsen, F.; Verheyen, K.; Wauters, E.; Lauwers, L. Greening and producing: An economic assessment framework for integrating trees in cropping systems. Agric. Syst. 2016, 148, 44–57. [Google Scholar] [CrossRef]
- Schulte, R.; Bampa, F.; Bardy, M.; Coyle, C.; Creamer, R.E.; Fealy, R.; Gardi, C.; Ghaley, B.B.; Jordan, P.; Laudon, H.; et al. Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Front. Environ. Sci. 2015, 3, 1–14. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Liagre, F.; Pisanelli, A.; Paris, P.; Moreno, G.; Bellido, M.; Mayus, M.; Postma, M.; Schindler, B.; et al. Farmer Perceptions of Silvoarable Systems in Seven European Countries. In Agroforestry in Europe: Current Status and Future Propspects; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Workman, S.W.; Bannister, M.E.; Nair, P. Agroforestry potential in the southeastern United States: Perceptions of landowners and extension professionals. Agrofor. Syst. 2003, 59, 73–83. [Google Scholar] [CrossRef]
- Augère-Granier, M.L. Agroforestry in the European Union. 2020. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf (accessed on 25 August 2020).
- Moreno, G.; Franca, A.; Pnto Correia, M.T.; Godinho, S. Multifunctionality and dynamics of silvopastoral systems. Options Méditerr. 2014, 109, 421–436. [Google Scholar]
- Perfecto, I.; VanderMeer, J.; Mas, A.; Soto-Pinto, L. Biodiversity, yield, and shade coffee certification. Ecol. Econ. 2005, 54, 435–446. [Google Scholar] [CrossRef]
- Gómez, J.A.; Guzmán, G.; Giráldez, J.V.; Fereres, E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Yamoah, C.F.; Grosz, R. Linking on-station research with on-farm testing: The case of agroforestry and organic matter-based cropping systems for the Rwanda farming systems improvement project. Agroforest. Syst. 1988, 6, 271–281. [Google Scholar] [CrossRef]
- Adesina, A.A.; Chianu, J. Determinants of farmers’ adoption and adaptation of alley farming technology in Nigeria. Agrofor. Syst. 2002, 55, 99–112. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Valdivia, C.; Raedeke, A.; Green, J.; Rikoon, J.S. Non-operator landowner interest in agroforestry practices in two Missouri watersheds. Agrofor. Syst. 2008, 75, 73–82. [Google Scholar] [CrossRef]
Policy | Relevance to AFS |
---|---|
Common Agricultural Policy (CAP) | Payments to farmers fulfilling 13 Statutory Management Requirements related to environment, climate change, and good agricultural condition land. |
European Biodiversity Strategy to 2020 | Aims to halt deterioration and improve the status of species and habitats covered by EU nature legislation. Linked to CAP and Natura 2000. |
Natura 2000—Habitats and Birds Directives | Aims to protect threatened species and associated habitats. Network of special protection areas (SPAs) and sites of Community importance (SCIs). Several EU funds available. |
European Strategy for Sustainable Development | Broad strategy involving many sectors. One objective is to manage natural resources responsibly and protect habitats and ecosystems, as well as halt the loss of biodiversity. |
European Climate Change Programme (ECCP) | EU strategy to implement the Kyoto Protocol. Measures to improve energy efficiency and reduce greenhouse gas emissions. |
European Forest Strategy | Aims to ensure sustainable and balanced forest management. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 2020, 12, 7001. https://doi.org/10.3390/su12177001
Sollen-Norrlin M, Ghaley BB, Rintoul NLJ. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability. 2020; 12(17):7001. https://doi.org/10.3390/su12177001
Chicago/Turabian StyleSollen-Norrlin, Maya, Bhim Bahadur Ghaley, and Naomi Laura Jane Rintoul. 2020. "Agroforestry Benefits and Challenges for Adoption in Europe and Beyond" Sustainability 12, no. 17: 7001. https://doi.org/10.3390/su12177001
APA StyleSollen-Norrlin, M., Ghaley, B. B., & Rintoul, N. L. J. (2020). Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability, 12(17), 7001. https://doi.org/10.3390/su12177001