Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Modified MCN Biochar from Macadamia Nutshells
2.3. Toxic Metal Adsorption Studies
2.4. Characterization of Biochars
3. Results and Discussion
3.1. SEM Image and FTIR Spectrum of the Modified-MCN Biochar
3.2. Adsorption of Cu2+ by Modified-MCN Biochar
3.3. Adsorption of Zn2+ by Modified-MCN Biochar
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrera Melián, J.A. Sustainable Wastewater Treatment Systems (2018–2019). Sustainability 2020, 12, 1940. [Google Scholar] [CrossRef] [Green Version]
- Chiou, W.-Y.; Hsu, F.-C. Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability 2019, 11, 6215. [Google Scholar] [CrossRef] [Green Version]
- Rehwoldt, R.; Bida, G.; Nerrie, B. Acute toxicity of copper, nickel and zinc ions to some Hudson River fish species. Bull. Environ. Contaminat. Toxicol. 1971, 6, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Sillanpää, M.E.; Sillanpää, M. Nanoadsorbents for remediation of aquatic environment: Local and practical solutions for global water pollution problems. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1233–1295. [Google Scholar] [CrossRef]
- Ukanwa, K.S.; Patchigolla, K.; Sakrabani, R.; Anthony, E.; Mandavgane, S. A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability 2019, 11, 6204. [Google Scholar] [CrossRef] [Green Version]
- Malara, A.; Paone, E.; Frontera, P.; Bonaccorsi, L.; Panzera, G.; Mauriello, F. Sustainable Exploitation of Coffee Silverskin in Water Remediation. Sustainability 2018, 10, 3547. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci. Total Environ. 2020, 725, 138325. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bbioprod. Biorefin. 2009, 3, 547–562. [Google Scholar] [CrossRef]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Cataldo, S.; Chiodo, V.; Crea, F.; Maisano, S.; Milea, D.; Pettignano, A. Biochar from byproduct to high value added material–A new adsorbent for toxic metal ions removal from aqueous solutions. J. Mol. Liq. 2018, 271, 481–489. [Google Scholar] [CrossRef]
- Paranavithana, G.; Kawamoto, K.; Inoue, Y.; Saito, T.; Vithanage, M.; Kalpage, C.; Herath, G. Adsorption of Cd 2+ and Pb 2+ onto coconut shell biochar and biochar-mixed soil. Environ. Earth Sci. 2016, 75, 484. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, Y.-K. Applications of Modified Biochar-Based Materials for the Removal of Environment Pollutants: A Mini Review. Sustainability 2020, 12, 6112. [Google Scholar] [CrossRef]
- Fan, F.; Yang, Z.; Li, H.; Shi, Z.; Kan, H. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. R. Soc. Open Sci. 2018, 5, 181126. [Google Scholar] [CrossRef] [Green Version]
- Bada, S.; Falcon, R.; Falcon, L.; Makhula, M. Thermogravimetric investigation of macadamia nut shell, coal, and anthracite in different combustion atmospheres. J. So. Afr. Inst. Min. Met. 2015, 115, 741–746. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, F.; Jiang, Q.; Zhu, M.; Jiang, Z.; Tang, Y.; Zhang, Y. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal. Environ. Sci. Pollut. Res. 2018, 25, 1405–1417. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Do, D. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 1997, 35, 1723–1732. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Zhang, D.; Wu, M.; Pan, B. Limited role of biochars in nitrogen fixation through nitrate adsorption. Sci. Total Environ. 2017, 592, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Singh, B.; Franks, S.; Birch, C.; Close, D. Nutrient changes in potting mix and Eucalyptus nitens leaf tissue under macadamia biochar amendments. J. For. Res. 2018, 29, 383–393. [Google Scholar] [CrossRef]
- Spokas, K.A.; Baker, J.M.; Reicosky, D.C. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452. [Google Scholar] [CrossRef]
- Kumar, U.; Maroufi, S.; Rajarao, R.; Mayyas, M.; Mansuri, I.; Joshi, R.K.; Sahajwalla, V. Cleaner production of iron by using waste macadamia biomass as a carbon resource. J. Clean. Prod. 2017, 158, 218–224. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.-H.; Duc Nguyen, D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; de Sousa Ribeiro, L.A.; Thim, G.P.; Ferreira, R.R.; Alvarez-Mendez, M.O.; dos Reis Coutinho, A. Activated carbon derived from macadamia nut shells: An effective adsorbent for phenol removal. J. Porous Mater. 2013, 20, 619–627. [Google Scholar] [CrossRef]
- Vilas Boas, N.; Casarin, J.; Passarella Gerola, G.; Ricardo Teixeira Tarley, C.; Caetano, J.; Celso Gonçalves, A., Jr.; Cardoso Dragunski, D. Evaluation of kinetic and thermodynamic parameters in adsorption of lead (Pb2+) and chromium (Cr3+) by chemically modified macadamia (Macadamia integrifolia). Desalin. Water Treat. 2016, 57, 17738–17747. [Google Scholar] [CrossRef]
- Ntuli, T.D. Preparation of Chemically Modified Macadamia Nutshells for Adsorptive Removal of Selected Heavy Metals. Ph.D. Thesis, Vaal University of Technology, Vanderbijlpark, South Africa, 2017. [Google Scholar]
- Hlungwane, L.; Viljoen, E.L.; Pakade, V.E. Macadamia nutshells-derived activated carbon and attapulgite clay combination for synergistic removal of Cr (VI) and Cr (III). Ads. Sci. Technol. 2018, 36, 713–731. [Google Scholar] [CrossRef] [Green Version]
- Maremeni, L.C.; Modise, S.J.; Mtunzi, F.M.; Klink, M.J.; Pakade, V.E. Adsorptive removal of hexavalent chromium by diphenylcarbazide-grafted Macadamia nutshell powder. Bioinorg. Chem. Appl. 2018, 2018, 6171906. [Google Scholar] [CrossRef] [Green Version]
- Pakade, V.E.; Ntuli, T.D.; Ofomaja, A.E. Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder. Appl. Water Sci. 2017, 7, 3015–3030. [Google Scholar] [CrossRef] [Green Version]
- Badruddoza, A.Z.M.; Tay, A.S.H.; Tan, P.Y.; Hidajat, K.; Uddin, M.S. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J. Hazard. Mater. 2011, 185, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Madhava Rao, M.; Ramesh, A.; Purna Chandra Rao, G.; Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 2006, 129, 123–129. [Google Scholar] [CrossRef]
- Pehlivan, E.; Özkan, A.M.; Dinç, S.; Parlayici, Ş. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J. Hazard. Mater. 2009, 167, 1044–1049. [Google Scholar] [CrossRef]
- Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632. [Google Scholar] [CrossRef]
- Imamoglu, M.; Tekir, O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 2008, 228, 108–113. [Google Scholar] [CrossRef]
- Thakur, L.S.; Parmar, M. Adsorption of heavy metal (Cu2+, Ni2+ and Zn2+) from synthetic waste water by tea waste adsorbent. Int. J. Chem. Phys. Sci. 2013, 2, 6–19. [Google Scholar]
- Singha, B.; Das, S.K. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. B Biointerfaces 2013, 107, 97–106. [Google Scholar] [CrossRef]
- Ngah, W.W.; Hanafiah, M.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, M.T.; Nguyen, T.T.T.; Nguyen, X.D.; La, D.D.; Nguyen, D.D.; Chang, S.W.; Chung, W.J.; Nguyen, V.K. Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste. Sustainability 2020, 12, 7909. https://doi.org/10.3390/su12197909
Dao MT, Nguyen TTT, Nguyen XD, La DD, Nguyen DD, Chang SW, Chung WJ, Nguyen VK. Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste. Sustainability. 2020; 12(19):7909. https://doi.org/10.3390/su12197909
Chicago/Turabian StyleDao, Minh Trung, T. T. Tram Nguyen, X. Du Nguyen, D. Duong La, D. Duc Nguyen, S. W. Chang, W. J. Chung, and Van Khanh Nguyen. 2020. "Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste" Sustainability 12, no. 19: 7909. https://doi.org/10.3390/su12197909
APA StyleDao, M. T., Nguyen, T. T. T., Nguyen, X. D., La, D. D., Nguyen, D. D., Chang, S. W., Chung, W. J., & Nguyen, V. K. (2020). Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste. Sustainability, 12(19), 7909. https://doi.org/10.3390/su12197909