Behavior Evaluation of Bituminous Mixtures Reinforced with Nano-Sized Additives: A Review
Abstract
:1. Introduction
2. Research Methodology
- Planning: Identification of the need which justifies the systematic literature review. Particularly, the research questions are:
- What are the types of nano-additives considered, and the methods and technological solutions investigated at international level?
- What are the performance improvements of bituminous mixtures additives with nanoparticles?
- What is the extent of the self-repairing capacity of bituminous mixtures with the addition of nanoparticles compared to those without additives?
- Conduction: Implementation of a search strategy compliant with the protocol defined in the previous phase;
- Reporting results: Description of the results, answers to the goal of the study, and discussion of the results.
3. Materials and Methods
3.1. Materials
3.1.1. Nanoclay
3.1.2. Nanosilica
3.1.3. Carbon NanoTube
- single-walled nanotubes or SWCNTs (single-walled carbon nanotubes): consisting of a single graphite sheet wrapped around itself;
- multi-walled nanotubes or MWCNTs (multi-walled carbon nanotubes): formed by multiple sheets coaxially wound one on the other.
3.1.4. Graphene Nanoplatelets
3.1.5. Nano-Oxides
Nano-Calcium Oxide (CaO)
- A reduction of the penetration value by 7%, which directly relates to resistance to high temperature [47];
- An increase of softening point’s value by 45% with resilience modulus value increased by 1.7 times that of neat bitumen [47];
- An improvement of bitumen’s characteristics in colder regions to avoid thermal cracking when added at 4% and 6% of weight of bitumen [48].
Nano-Titanium Dioxide (TiO2)
- in association with other modifiers, such as polymers, it can improve the softening point and the ductility of the binder [52];
- have the ability to remove air pollutants [53];
- degrade most pollutants from automobile exhaust [54];
- improve creep comportment and prevent vertical cracks (added in 5% of bitumen mass) [49];
- improve fatigue life and flexural stiffness [55].
3.2. Methods
3.2.1. Mixing Techniques
- The first is based on a simple shear mixing procedure [22,57,64,65] and consists of two phases. In the first phase, the nano-additives are manually added to the bitumen. A second phase follows this (pre-mixing) one; a mechanical stirrer (Figure 2) with heating mixes at 1550 rpm and a constant temperature of 150 °C the additivated bitumen for 90 min.This technique is not only the most convenient to use in laboratory, but is easily transferable on industrial scale in hot-mix asphalt plants.
- The second mixing procedure consists of three phases: a third phase (i.e., ultrasonic sonication) is added to those of the first procedure. In one research project [63], a UP 200S ultrasonic homogenizer (200 W and 24 kHz) equipped with a titanium cylindrical sonotrode (7 mm diameter) was used. When it was immersed in the fluid mixture at a constant temperature of 150 °C, the generated ultrasounds propagated inside the material. The transmitted compression waves allowed separation of individual nanoparticles from the existing agglomerations and ensured a greater homogeneity of dispersion [60]. In order to improve the dispersion, several researchers tested duration and amplitude of the waves during sonication [27,66,67]. Finally, the effects of sonication on the distribution of nanoparticles were evaluated directly by microscope or indirectly through rheometric methods. Particularly, the storage modulus was sensitive to dispersion of nanoparticles: it increases with increasing energy spent during homogenization (both sonication duration and wave amplitude [68]).
3.2.2. Testing Program
- Viscosity tests according to AASHTO T316-04 [73].
- Through the use of the DSR (dynamic shear rheometer), OSL (oscillatory shear loading) and MSCR (multiple stress creep recovering) tests were carried out, increasing stresses from 0.1 to 3.2 kPa and different temperature values according to AASHTO TP 70-10 [74]. By applying a shear stress, the equipment measures the binder’s response in shear-cut terminations. Through the relationship between the applied cutting force and the obtained deformation, the rheometer allows us to obtain the following parameters:
- G* (complex modulus);
- δ (phase angle);
- G*/sinδ (parameter correlated to rutting);
- G* sinδ (parameter correlated to fatigue).
- Fatigue tests according to AASHTO T 315 [75].
- Self-repair tests performed by means of cyclic load tests of the time sweep type interrupted by multiple rest periods; the test ends when a reduction in initial dissipation energy of 5%, 10%, 30%, and 50% is reached.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jahromi, S.G.; Khodaii, A. Effects of nanoclay on rheological properties of bitumen binder. Constr. Build. Mater. 2009, 23, 2894–2904. [Google Scholar] [CrossRef]
- Whiteoak, D.; Read, J.; Hunter, R. The Shell Bitumen Handbook, 5th ed.; Thomas Telford Publishing: London, UK, 2003. [Google Scholar]
- Canestrari, F.; Cardone, F.; Graziani, A.; Santagata, F.A.; Bahia, H.U. Adhesive and cohesive properties of asphalt-aggregate system subjected to moisture damage. Road Mater. Pavement 2010, 11, 11–32. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Ani, O.J. Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr. Build. Mater. 2015, 98, 692–702. [Google Scholar] [CrossRef]
- Ameri, M.; Kouchaki, S.; Roshani, H. Laboratory evaluation of the effect of nano-organosilane anti-stripping additive on the moisture susceptibility of HMA mixtures under freeze–thaw cycles. Constr. Build. Mater. 2013, 48, 1009–1016. [Google Scholar] [CrossRef]
- Kiggundu, B.M.; Roberts, F.L. Stripping in HMA mixtures: State-of-the-art and critical review of test methods. In National Center for Asphalt Technology; Report No. 88–02; Auburn University: Auburn, GA, USA, 1988. [Google Scholar]
- Ameri, M.; Nowbakht, S.H.; Molayem, M.; Aliha, M.R.M. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 896–906. [Google Scholar] [CrossRef]
- Bahia, H.U.; Hanson, D.I.; Zeng, M.; Zhai, H.; Khatri, M.A.; Anderson, R.M. Characterization of modified asphalt binders in Superpave mix design. In NCHRP, Report 459; National Cooperative Highway Research Program: Washington, DC, USA, 2001. [Google Scholar]
- Santagata, E.; Baglieri, O. Experimental evaluation of modified bituminous binders for heavy duty applications. In Proceedings of the 3rd International SIIV Congress, Bari, Italy, 22–24 September 2005. [Google Scholar]
- Steyn, W.J.; Bosman, T.E.; Galle, S.; Van Heerden, J. Evaluating the properties of bitumen stabilized with carbon nanotubes. Open J. Adv. Mater. Res. 2013, 723, 312–319. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.M.; Hamima, A.; Ahmad, J. The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 2014, 72, 139–147. [Google Scholar] [CrossRef]
- Isacsson, U.; Lu, X. Testing and appraisal of polymer modified road bitumen-state of art. Mater. Struct. 1995, 28, 139–159. [Google Scholar] [CrossRef]
- Bergman, C.P.; de Andrade, M.J. Nanostructured Materials for Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kroto, H.; Heath, J.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, 17–71. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Chong, K.P.; Larsen-Basse, J. Challenges in mechanics and materials research in the twenty-first century. J. Mater. Civ. Eng. 2005, 17, 241–245. [Google Scholar] [CrossRef]
- Sobolev, K.; Gutierrez, M.F. How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 2005, 84, 14–18. [Google Scholar]
- Buehler, M.J.; Ackbarow, T. Fracture mechanics of protein materials. Mater. Today Commun. 2007, 10, 46–58. [Google Scholar] [CrossRef]
- Steyn, W.J. Potential application of nanotechnology in pavement engineering. J. Transp. Eng. ASCE 2009, 135, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R.; Zhang, P. The impact of carbon nano-fiber modification on asphalt binder rheology. Constr. Build. Mater. 2012, 30, 257–264. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Dalmazzo, D. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia Soc. Behav. Sci. 2012, 53, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wu, S.; Van de Ven, M.F.C.; Molenaar, A.A.A.; Besamusca, J. Modification of bitumen with organic montmorillonite nanoclay. In Proceedings of the Third International Conference on Advances and Trends in Engineering Materials and Their Applications, Ottawa, ON, Canada, 6–10 July 2009. [Google Scholar]
- Liu, G.; Wu, S.; Van de Ven, M.F.C.; Yu, J.; Molenaar, A.A.A. Influence of sodium monymorillonites on the properties of bitumen. Appl. Clay Sci. 2010, 49, 69–73. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26. [Google Scholar]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Zare-Shahabadi, A.; Shokuhfar, A.; Ebrahimi-Nejad, S. Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Constr. Build. Mater. 2010, 24, 1239–1244. [Google Scholar] [CrossRef]
- Ganesh, V.K. Nanotechnology in Civil Engineering. Eur. Sci. J. 2012, 8, 96–109. [Google Scholar]
- Yu, J.; Zeng, X.; Wu, S.; Wang, L.; Liu, G. Preparation and properties of montmorillonite modified asphalts. Mater. Sci. Eng. A 2007, 447, 233–238. [Google Scholar] [CrossRef]
- Polacco, G.; Krix, P.; Filippi, S.; Stastna, J.; Biondi, D.; Zanzotto, L. Rheological properties of asphalt/SBS/clay blends. Eur. Polym. J. 2008, 44, 3512–3521. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; You, Z.; Li, L.; Shi, X.; Goh, S.W.; Mill-Beale, J.; Wingard, D. Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Constr. Build. Mater. 2012, 35, 159–170. [Google Scholar] [CrossRef]
- Kennedy, T.W.; Huber, G.A.; Harrigan, E.T.; Cominsky, R.J.; Hughes, C.S.; Von Quintus, H.; Moulthrop, J.S. Superior Performing Asphalt Pavements (Superpave); The Product of the S.H.R.P; Asphalt Research Program; National Research Counciul: Washinghton, DC, USA, 1994.
- Hossain, Z.; Zaman, M.; Saha, M.C.; Hawa, T. Evaluation of viscosity and rutting properties of nanoclay-modified asphalt binders. In Proceedings of the Geo-Congress 2014, Atlanta, GA, USA, 23–26 February 2014. [Google Scholar]
- Abdelrahman, M.; Katti, D.R.; Ghavibazoo, A.; Upadhyay, H.B.; Katti, K.S. Engineering physical properties of asphalt binders through nanoclay-asphalt interactions. J. Mater. Civ. Eng. 2014, 26, 04014099. [Google Scholar] [CrossRef]
- Yang, J.; Tighe, S. A review of advances of nanotechnology in asphalt mixtures. 13th COTA International Conference of Transportation Professionals (CICTP 2013). Procedia Soc. Behav. Sci. 2013, 96, 1269–1276. [Google Scholar] [CrossRef] [Green Version]
- Mun, S.; Lee, H. Modeling viscoelastic crack growth in hot-mix asphalt concrete mixtures using a disk-shaped compact tension test. J. Eng. Mech. 2011, 137, 431–438. [Google Scholar] [CrossRef]
- Barik, T.K.; Sahu, B.; Swain, V. Nanosilica-from medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef]
- Chrissafis, K.; Paraskevopoulos, K.M.; Papageorgiou, G.Z.; Bikiaris, D.N. Thermal and dynamic mechanical behavior of bionanocomposities: Fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J. Appl. Polym. 2008, 110, 1739–1749. [Google Scholar] [CrossRef]
- Quercia Bianchi, G.; Brouwers, H.J.H. Application of nano-silica (nS) in concrete mixtures. In Proceedings of the 8th FIB PhD Symposium in Civil Engineering, Lyngby, Denmark, 20–23 June 2010. [Google Scholar]
- Xiao, F.; Amirkhanian, A.N.; Amirkhanian, S.N. Influence on rheological characteristics of asphalt binders containing carbon nanoparticles. J. Mater. Civ. Eng. 2011, 23, 423–431. [Google Scholar] [CrossRef]
- Al-Adham, K.; Arifuzzaman, M. Moisture damage evaluation in carbon nanotubes reinforced asphalts. In Sustainability, Eco-Efficiency, and Conservation in Transportation Infrastructure Asset Management, 1st ed.; Taylor and Francis Group: London, UK, 2014; pp. 103–109. [Google Scholar]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Characterization of unaged asphalt binder modified with carbon nano particles. Int. J. Pavement Res. Technol. 2011, 4, 281–286. [Google Scholar]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles. J. Test. Eval. 2011, 39, 583–591. [Google Scholar]
- Le, J.L.; Du, H.; Pang, S.D. Use of 2D graphene nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. Part B Eng. 2014, 67, 555–563. [Google Scholar] [CrossRef]
- Le, J.; Marasteanu, M.; Turos, M. Graphene nanoplatelet (GNP) reonforced asphalt mixtures: A novel multifunctional pavement material. In NCHRP IDEA, Final Report Project 173; TRB, University of Minnesota: Minneapolis, MN, USA, 2016. [Google Scholar]
- Leone, M.F. Alte Prestazioni ed Ecoefficienza: Nanotecnologie per L’evoluzione dei Materiali Cementizi; Dottorato di Ricerca in Tecnologia dell’Architettura XXI Ciclo Scuola di Dottorato in Architettura [in Italian]; University of Naples “FedericoII”: Naples, Italy, 2008. [Google Scholar]
- Farag, K.; Abd-El-Sadek, M.S.; Hamdy, S.E. Mechanical properties of modified asphalt concrete mixtures using CA(OH)2 nanoparticles. Int. J. Civ. Eng. 2014, 5, 61–68. [Google Scholar]
- Javad, T.; Atousa, K. Decreasing thermal cracking on asphalt pavement by nano calcium carbonate (CCN) Modified bitumen. J. Des. Built Environ. 2016, 64–70. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures. Constr. Build. Mater. 2014, 54, 566–571. [Google Scholar] [CrossRef]
- Tanzadeh, J.; Vahedi, F.; Kheiry, P.T.; Tanzadeh, R. Laboratory study on the effect of nano TiO2 on rutting performance of asphalt pavements. Adv. Mater. Res. 2013, 622, 990–994. [Google Scholar]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Zhang, H.; Su, M.; Zhao, S.; Zhang, Y.; Zhang, Z. High and low temperature properties of nano-particles/polymer modified. Constr. Build. Mater. 2016, 114, 323–332. [Google Scholar] [CrossRef]
- Hassan, M.; Mohammad, L.; Cooper, S.; Dylla, H. Evaluation of nano-titanium dioxide additive on asphalt binder aging properties. Transp. Res. Rec. J. Transp. Res. Board 2011, 2207, 11–15. [Google Scholar] [CrossRef]
- Hu, C.; Ma, J.; Jiang, H.; Chen, Z.; Zhao, J. Evaluation of nano-TiO2 modified waterborne epoxy resin as fog seal and exhaust degradation material in asphalt pavement. J. Test. Eval. 2017, 45, 260–267. [Google Scholar] [CrossRef]
- Tanzadeh, J.; Tanzadeh, R.; Nazari, H. Fatigue evaluation of hot mix asphalt (HMA) mixtures modified by optimum percent of TiO2 nanoparticles. Adv. Eng. Forum 2017, 24, 55–62. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO M 320. In Standard Specification for Performance-Graded Asphalt Binder; AASHTO: Washington, DC, USA, 2010. [Google Scholar]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Effects of nano-sized additives on the high temperature properties of bituminous binders: A comparative study. In International RILEM Symposium on Multi-Scale Modeling and Characterization of Infrastructure Materials; RILEM Bookseries; Springer: Dordrecht, The Netherlands; Holland, MI, USA, 2013; pp. 297–309. [Google Scholar]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Fatigue and healing properties of nano-reinforced bituminous binders. Int. J. Fatigue 2015, 80, 30–39. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Fatigue properties of bituminous binders reinforced with carbon nanotubes. Int. J. Pavement Eng. 2015, 16, 80–90. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Storage stability of bituminous binders reinforced with nano-additives. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; RILEM Bookseries; Springer: Basel, Switzerland, 2015; Volume 11, pp. 75–87. [Google Scholar]
- Filho, P.G.T.M.; Rodrigues dos Santos, A.T.; Lucena, L.C.; Tenorio, E.A.G. Rheological evaluation of asphalt binder modified with nanoparticles of titanium dioxide. Int. J. Civ. Eng. 2020, 18, 1195–1207. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanpcomposities: A review. Compos. Part A 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Planellas, M.; Sacristan, M.; Rey, L.; Olmo, C.; Aymamì, J.; Casa, M.T.; del Valle, L.J.; Franco, L.; Puiggalì, J. Micro-molding with ultrasonic vibration energy: New method to disperse nanoclays in polymer matrices. Ultrason. Sonochem. 2014, 21, 1557–1569. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Damage and healing test protocols for the evaluation of bituminous binders. In Proceedings of the 5th Eurasphalt & Eurobitume Congress 2012a, Istanbul, Turkey, 13–15 June 2012. [Google Scholar]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Dalmazzo, D. Evaluation of self healing properties of bituminous binders taking into account steric hardening effects. Constr. Build. Mater. 2013, 41, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R. Characterization of carbon nano-fiber modified hot mix asphalt mixtures. Constr. Build. Mater. 2013, 40, 738–745. [Google Scholar] [CrossRef]
- Khattak, M.J.; Khattab, A.; Zhang, P.; Rizvi, H.R.; Pesacreta, T. Microstructure and fracture morphology of carbon nano-fiber modified asphalt and hot mix asphalt mixtures. Mater. Struct. 2013, 46, 2045–2057. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G.; Brignone Aimonetto, I. Effect of sonication on the high temperature properties of bituminous binders reinforced with nano-additives. Constr. Build. Mater. 2015, 75, 395–403. [Google Scholar] [CrossRef]
- Ziari, H.; Rahim-of, K.; Fazilati, M.; Goli, A.; Farahani, H. Evaluation of different conditions on the mixing bitumen and carbon nano-tubes. Int. J. Civ. Environ. Eng. 2012, 12, 53–59. [Google Scholar]
- Deepa, P.; Laad, M.; Singh, R. An overview of use of nanoadditives in enhancing the properties of pavement construction binder bitumen. Word J. Eng. 2019, 16, 132–137. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO T240-09-UL. In Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test); AASHTO: Washington, DC, USA, 2009. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO R028-09-UL. In Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV); AASHTO: Washington, DC, USA, 2009. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO T316-04. In Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer; AASHTO: Washington, DC, USA, 2010. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO TP 70-10. In Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR); AASHTO: Washington, DC, USA, 2010. [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO T 315. In Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR); AASHTO: Washington, DC, USA, 2010. [Google Scholar]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Dalmazzo, D.; Chiappinelli, G. Fatigue and healing properties of bituminous mastics reinforced with nano-sized additives. Mech. Time-Depend. Mater. 2016, 20, 367–387. [Google Scholar] [CrossRef]
- Airey, G.D.; Thom, N.H.; Osman, H.; Collop, A.C. A comparison of bitumen/mastic fatigue data from different test methods. In Proceedings of the 5th International RILEM Conference on Reflective Cracking in Pavements, Limoges, France, 5–8 May 2004; pp. 383–390. [Google Scholar]
- Santagata, E.; Baglieri, O.; Dalmazzo, D. Experimental investigation on the fatigue damage behaviour of modified bituminous binders and mastics. J. Assoc. Asph. Paving 2008, 77, 851–883. [Google Scholar]
- Planche, J.P.; Anderson, D.A.; Gauthier, G.; Le Hir, Y.M.; Martin, D. Evaluation of fatigue properties of bituminous binders. Mater. Struct. Mater. Constr. 2004, 37, 356–359. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Rheological and chemical investigation on the damage and healing properties of bituminous binders. J. Assoc. Asph. Paving 2009, 78, 567–595. [Google Scholar]
- Filippi, S.; Cappello, M.; Merce, M.; Polacco, G. Effects of nanoadditives on bitumen aging resistance: A critical review. J. Nanomater. 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, R.; Moretti, L.; Fiore, N.; D’Andrea, A. Behavior Evaluation of Bituminous Mixtures Reinforced with Nano-Sized Additives: A Review. Sustainability 2020, 12, 8044. https://doi.org/10.3390/su12198044
Fusco R, Moretti L, Fiore N, D’Andrea A. Behavior Evaluation of Bituminous Mixtures Reinforced with Nano-Sized Additives: A Review. Sustainability. 2020; 12(19):8044. https://doi.org/10.3390/su12198044
Chicago/Turabian StyleFusco, Raffaella, Laura Moretti, Nicola Fiore, and Antonio D’Andrea. 2020. "Behavior Evaluation of Bituminous Mixtures Reinforced with Nano-Sized Additives: A Review" Sustainability 12, no. 19: 8044. https://doi.org/10.3390/su12198044
APA StyleFusco, R., Moretti, L., Fiore, N., & D’Andrea, A. (2020). Behavior Evaluation of Bituminous Mixtures Reinforced with Nano-Sized Additives: A Review. Sustainability, 12(19), 8044. https://doi.org/10.3390/su12198044