Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance
Abstract
:1. Introduction
2. The Effect of Building Envelope Design on Indoor Environmental Performance
Window Design in Relation to CO2 and Thermal Comfort in Naturally Ventilated Buildings
3. Materials and Methods
3.1. Building Performance Simulations (BPS)
3.2. Climate Analysis of Famagusta
3.3. Building Case and Window Design Features
3.4. Parameters of Thermal Simulations and Internal Conditions
3.5. Performance Criteria and Assessment Methods
3.5.1. Assessment of Carbon Dioxide (CO2) Performance
3.5.2. Thermal Comfort Assessment Using an Adaptive Model
4. Simulation Results and Analysis
4.1. Effect of Window Design and Natural Ventilation on CO2 Concentration
4.1.1. Results of Single-Sided Natural Ventilation
4.1.2. Results of Cross-Flow Natural Ventilation
4.2. Results of Adaptive Thermal Comfort
4.2.1. Findings of Single-Sided Natural Ventilation Using an Adaptive Model
4.2.2. Findings of Cross-Flow Natural Ventilation Using Adaptive Model
5. Discussion and Concluding Remarks
5.1. Window and Natural Ventilation Performance in Terms of “Indoor CO2 Level and Thermal Comfort”
5.2. Concluding Remarks and Recommendations
- Closed windows for any window size, orientation and location cannot provide any office working hours that the CO2 concentration appears under category I and II according to the BS EN 15251: 2007 standard. In addition, the CO2 level exceeds the recommended threshold (1000 ppm); it also reaches 2000 ppm, for which occupants may suffer from sick building syndrome (SBS).
- In the free-running period, a window opening is the main method of ventilation and cooling, thus occupants use windows as well as other physiological adaptation mechanisms to maintain indoor air and thermal conditions. Therefore, closing windows is not acceptable, neither for indoor air nor for thermal comfort conditions, even in the winter months.
- Natural ventilation performance depends on the direction of the wind, air velocity, and the turbulence characteristics of the wind.
- From an architectural point of view, window design, including various parameters, highly effects natural ventilation performance. Thus, architects should study and understand the relationship between window design and natural ventilation in a particular climatic condition, to help them make informed decisions in the early design stage.
- Cross-ventilation scenarios are more efficient in terms of allowing a greater amount of airflow to pass through openings. Cross-flow by a window combination of the south- and east-facing windows is the most effective case. Conversely, the north- and west-oriented windows offer the least effective cross-ventilation scenario.
- Despite the existence of a cross-ventilation strategy, the sun’s harmful rays could reduce the potential of this effective passive strategy. It was observed that larger window sizes and opening ratios could decrease the effectiveness of window and natural ventilation due to the extreme outdoor weather conditions in both the summer and winter months.
- Overall, the results of unshaded windows of this study indicate that single-sided ventilation through a small window size (i.e., 10% WFR) with half to fully opened area can be more effective than larger window sizes of the same ventilation strategy, and even more effective than cross-ventilation of various window designs in adjacent walls.
- Floor location has its effect on the window and natural ventilation performance in a way that the windows of the higher floor zones are more effective than those in the lower floors do.
- Natural ventilation performance decreases in the first-floor zones, showing higher carbon dioxide levels, namely for the south-facing window in the summer and north-facing window in the winter.
- Natural ventilation performance shows less efficient in terms of diluting CO2 contaminant in the cool period compared to the warm period.
- Unshaded windows, even with the most effective design and ventilation strategy, can only provide 50% to 60% of the office occupancy time as thermally acceptable for adaptive thermal comfort.
- To adopt passive design strategies effectively in the Mediterranean climatic, it is important to consider every building envelope element, such as the optimal window design attributes, window-to-floor area, window type, appropriate glazing materials, window orientation, and the required shading ratios to improve indoor thermal comfort and reduce CO2 levels. More studies are required to address conflicting performance criteria simultaneously in naturally ventilated office buildings.
- A performance-based window design model can guide architects toward making knowledge-based and informed-decisions in the early architectural design stages.
Author Contributions
Funding
Conflicts of Interest
References
- Lai, H.K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys, P.; Colvile, R.; Ashmore, M.R.; et al. Personal Exposures and Microenvironment Concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmos. Environ. 2004, 38, 6399–6410. [Google Scholar] [CrossRef]
- DeDear, R.J.; Brager, G.S. Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Wargocki, P.; Witterseh, T.; Clausen, G.; Fanger, P.O. Field Study on the Impact of Temperature, Humidity and Ventilation on Perceived Air Quality. In Proceedings of the Indoor Air Quality and Climate, Edinburgh, Scotland, 8–13 August 1999; pp. 107–112. [Google Scholar]
- Larsen, T.S.; Heiselberg, P. Single-sided natural ventilation driven by wind pressure and temperature difference. Energy Build. 2008, 40, 1031–1040. [Google Scholar] [CrossRef]
- Abdullah, H.K.; Alibaba, H.Z. Towards Nearly Zero-Energy Buildings: The Potential of Photovoltaic-Integrated Shading Devices to Achieve Autonomous Solar Electricity and Acceptable Thermal Comfort in Naturally ventilated Office Spaces. In Proceedings of the 16th International Conference on Clean Energy, Famagusta, North Cyprus, 9–11 May 2018; pp. 1–11. [Google Scholar]
- Mora-pérez, M.; Guillen-guillamón, I.; López-patiño, G.; López-jiménez, P.A. Natural Ventilation Building Design Approach in Mediterranean Regions—A Case Study at the Valencian Coastal Regional Scale (Spain). Sustainability 2016, 8, 855. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.H.; Huang, B. Comparative Study of the Indoor Air Quality of Naturally Ventilated and Air-Conditioned Bedrooms of Residential Buildings in Singapore. Build. Environ. 2004, 39, 1115–1123. [Google Scholar] [CrossRef]
- Omrani, S.; Garcia-Hansen, V.; Capra, B.R.; Drogemuller, R. On the Effect of Provision of Balconies on Natural Ventilation and Thermal Comfort in High-Rise Residential Buildings. Build. Environ. 2017, 123, 504–516. [Google Scholar] [CrossRef]
- Taylor, P.; Liping, W.; Hien, W.N. Applying Natural Ventilation for Thermal Comfort in Residential Buildings in Singapore. Archit. Sci. Rev. 2011, 50, 224–233. [Google Scholar] [CrossRef]
- Dascalaki, E.G.; Sermpetzoglou, V.G. Energy Performance and Indoor Environmental Quality in Hellenic Schools. Energy Build. 2011, 43, 718–727. [Google Scholar] [CrossRef]
- Sharmin, T.; Gül, M.; Li, X.; Ganev, V.; Nikolaidis, I.; Al-Hussein, M. Monitoring Building Energy Consumption, Thermal Performance, and Indoor Air Quality in a Cold Climate Region. Sustain. Cities Soc. 2014, 13, 57–68. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, C.; Wang, L.; Li, N. Effect of Natural Ventilation on Indoor Air Quality and Thermal Comfort in Dormitory during Winter. Build. Environ. 2017, 125, 240–247. [Google Scholar] [CrossRef]
- Inanici, M.N.; Demirbilek, F.N. Thermal Performance Optimization of Building Aspect Ratio and South Window Size in Five Cities Having Different Climatic Characteristics of Turkey. Build. Environ. 2000, 35, 41–52. [Google Scholar] [CrossRef]
- Baker, N.; Steemers, K. Energy and Environment in Architecture; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Steadman, P.; Bruhns, H.R.; Holtier, S.; Gakovic, B. A Classification of Built Forms. Environ. Plan. B Urban Anal. City Sci. 2000, 27, 73–91. [Google Scholar] [CrossRef]
- Ratti, C.; Baker, N.; Steemers, K. Energy Consumption and Urban Texture. Energy Build. 2005, 37, 762–776. [Google Scholar] [CrossRef]
- Lin, M.; Pan, Y.; Long, W.; Chen, W. Influence of Building Shape Coefficient on Energy Consumption of Office Buildings in Hot-Summer-and-Cold-Winter Area of China. Build. Energy Effic. 2015, 10, 728–735. [Google Scholar]
- St. Clair, P.; Hyde, R. Towards a New Model for Climate Responsive Design at the University of the Sunshine Coast Chancellery. J. Green Build. 2010, 4, 3–20. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K. Energy Performance of Residential Buildings in Singapore. Energy 2010, 35, 667–678. [Google Scholar] [CrossRef]
- Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The Effect of Building Envelope on the Thermal Comfort and Energy Saving for High-Rise Buildings in Hot-Humid Climate. Renew. Sustain. Energy Rev. 2016, 53, 1508–1519. [Google Scholar] [CrossRef]
- Ghafari, F.; Mirrahimi, S.Z.; Heidari, S. Influence of Ceiling Height on Heating Energy Consumption in Educational Building. In Proceedings of the 15th International Conference on Civil and Architecture Engineering, Pattaya, Thailand, 25–26 April 2018; pp. 1–7. [Google Scholar]
- Guimarães, R.P.; Carvalho, M.C.R.; Santos, F.A. The Influence of Ceiling Height in Thermal Comfort of Buildings: A Case Study in Belo Horizonte, Brazil. Int. J. Hous. Sci. 2013, 37, 75–85. [Google Scholar]
- Ralegaonkar, R.V.; Gupta, R. Review of Intelligent Building Construction: A Passive Solar Architecture Approach. Renew. Sustain. Energy Rev. 2010, 14, 2238–2242. [Google Scholar] [CrossRef]
- Mickaël, D.; Bruno, B.; Valérie, C.; Murielle, L.; Cécile, P.; Jacques, R.; Severine, K. Indoor Air Quality and Comfort in Seven Newly Built, Energy-Efficient Houses in France. Build. Environ. 2014, 72, 173–187. [Google Scholar] [CrossRef]
- Zhu, C.; Li, N. Study on Indoor Air Quality Evaluation Index Based on Comfort Evaluation Experiment. Procedia Eng. 2017, 205, 2246–2253. [Google Scholar] [CrossRef]
- Wang, J.; Li, J. Bio-Inspired Kinetic Envelopes for Building Energy Efficiency Based on Parametric Design of Building Information Modeling. In Proceedings of the 2010 Asia-Pacific Power Energy Engineering Conference (APPEEC), Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Abdullah, H.K.; Alibaba, H.Z. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices. Sustainability 2017, 9, 2096. [Google Scholar] [CrossRef] [Green Version]
- Alibaba, H.Z.; Ozdeniz, M.B. Energy Performance and Thermal Comfort of Double-Skin and Single-Skin Facades in Warm-Climate Offices. J. Asian Archit. Build. Eng. 2016, 15, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Al-Tamimi, N.A.M.; Fadzil, S.F.S.; Harun, W.M.W. The Effects of Orientation, Ventilation, and Varied WWR on the Thermal Performance of Residential Rooms in the Tropics. J. Sustain. Dev. 2011, 4, 142–149. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The Effect of Natural Ventilation Strategy on Indoor Air Quality in Schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L. A Review of Daylighting Strategies in Schools: State of the Art and Expected Future Trends. Buildings 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. EN ISO 16814—Building Environment Design—Indoor Air Quality—Methods of Expressing the Quality of Indoor Air for Human Occupancy; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- Fadzil, S.F.S.; Abdullah, A.; Harun, W.M.W. The Impact of Varied Orientation and Wall Window Ratio (WWR) To Daylight Distribution in Residental Rooms. In Proceedings of the International Symposium on Construction in Developing Economies: Commonalities among Diversities (CIBW 107), Penang, Malaysia, 5 Octobar 2009; pp. 478–485. [Google Scholar]
- Wagdy, A.; Sherif, A.; Sabry, H.; Arafa, R.; Mashaly, I. Daylighting Simulation for the Configuration of External Sun-Breakers on South Oriented Windows of Hospital Patient Rooms under a Clear Desert Sky. Sol. Energy 2017, 149, 164–175. [Google Scholar] [CrossRef]
- AlAnzi, A.; Seo, D.; Krarti, M. Impact of Building Shape on Thermal Performance of Office Buildings in Kuwait. Energy Convers. Manag. 2009, 50, 822–828. [Google Scholar] [CrossRef]
- Pedrini, A.; Vilar De Carvalho, J.P. Analysis of Daylight Performance in Classrooms in Humid and Hot Climate. In Proceedings of the 30th International PLEA Conference, Ahmedabad, India, 16–18 December 2014; pp. 1–10. [Google Scholar]
- Aflaki, A.; Mahyuddin, N.; Al-Cheikh Mahmoud, Z.; Baharum, M.R. A Review on Natural Ventilation Applications through Building Façade Components and Ventilation Openings in Tropical Climates. Energy Build. 2015, 101, 153–162. [Google Scholar] [CrossRef]
- Alibaba, H.Z. Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate. Sustainability 2016, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Alibaba, H.Z. Heat and Air Flow Behavior of Naturally Ventilated Offices in a Mediterranean Climate. Sustainability 2018, 10, 3284. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Xie, J.; Liu, J. Indoor Air Quality in a Naturally Ventilated Research Student Office in Chinese Universities during Heating Period. Procedia Eng. 2017, 205, 1272–1278. [Google Scholar] [CrossRef]
- Laska, M.; Dudkiewicz, E. Research of CO2 Concentration in Naturally Ventilated Lecture Room. In Proceedings of the International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), Wrocław, Poland, 2–5 July 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Krawczyk, D.A.; Rodero, A.; Gładyszewska-Fiedoruk, K.; Gajewski, A. CO2 concentration in Naturally Ventilated Classrooms Located in Different Climates—Measurements and Simulations. Energy Build. 2016, 129, 491–498. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, X.; Gao, J.; Cao, G.; Zhou, X.; Su, X. Indoor Air Pollutants, Ventilation Rate Determinants and Potential Control Strategies in Chinese Dwellings: A Literature Review. Sci. Total Environ. 2017, 586, 696–729. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe, 2nd ed.; World Health Organization Regional Office for Europe, European Series, No. 91; WHO: Copenhagen, Denmark, 2000. [Google Scholar] [CrossRef]
- Jones, A.P. Chapter 3 Indoor Air Quality and Health. Dev. Environ. Sci. 2002, 1, 57–115. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Erdman, C.A.; Steiner, K.C.; Apte, M.G. Indoor Carbon Dioxide Concentrations and Sick Building Syndrome Symptoms in the Base Study Revisited: Analyses of the 100 Building Dataset. In Proceedings of the International Conference on Indoor Air, Monterey, CA, USA, 30 June–5 July 2002; Volume III, pp. 443–448. [Google Scholar]
- Vasile, V.; Petran, H.; Dima, A.; Petcu, C. Indoor Air Quality—A Key Element of the Energy Performance of the Buildings. Energy Procedia 2016, 96, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Daniel, S.; Rubio-bellido, C.; Pulido-arcas, J.A. Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming. Sustainability 2018, 10, 3507. [Google Scholar] [CrossRef] [Green Version]
- Campano, M.Á.; Dom, S.; Fern, J.; Jos, J. Thermal Perception in Mild Climate: Adaptive Thermal Models for Schools. Sustainability 2019, 11, 3948. [Google Scholar] [CrossRef] [Green Version]
- Castaño-Rosa, R.; Rodríguez-Jiménez, C.E.; Rubio-Bellido, C. Adaptive Thermal Comfort Potential in Mediterranean Office Buildings: A Case Study of Torre Sevilla. Sustainability 2018, 10, 3091. [Google Scholar] [CrossRef] [Green Version]
- Salvalai, G.; Pfafferott, J.; Sesana, M.M. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings. Energy Convers. Manag. 2013, 76, 332–341. [Google Scholar] [CrossRef]
- Engelmann, P.; Kalz, D.; Salvalai, G. Cooling concepts for non-residential buildings: A comparison of cooling concepts in different climate zones. Energy Build. 2014, 82, 447–456. [Google Scholar] [CrossRef]
- Croitoru, C.; Nastase, I.; Crutescu, R.; Badescu, V. Thermal comfort in a Romanian passive house. Preliminary results. Energy Procedia 2018, 85, 575–583. [Google Scholar] [CrossRef] [Green Version]
- EDSL. TAS Engineering; Environmental Design Solutions Ltd. (EDSL): Stony Stratford, UK, 2019. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Union of The Chambers of Cyprus Turkish Engineers and Architects (KTMMOB). Chapter 96 Regulation: The Streets and Buildings Regulation. Available online: http://www.mimarlarodasi.org/tr/mevzuat/fasil-96-duzenleme/ (accessed on 21 May 2019).
- CIBSE. Guide A: Environmental Design; The Chartered Institution of Building Services Engineers (CIBSE): London, UK, 2015. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55—Thermal Environmental Conditions for Human Occupancy; American National Standard Institute (ANSI) and American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2017. [Google Scholar]
- ASHRAE. ASHRAE Handbook: Fundamentals; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA, 2013. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 62.1—Ventilation for Acceptable Indoor Air Quality; American National Standard Institute (ANSI) and American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2019. [Google Scholar]
- Voss, J. Revisiting Office Space Standards.; Haworth, Inc.: Grand Rapids, MI, USA, 2000. [Google Scholar]
- EDSL. TAS Theory Manual; Environmental Design Solutions Ltd. (EDSL): Stony Stratford, UK, 2019; Available online: http://www.edsl.net/main/Support/Documentation.aspx (accessed on 13 December 2019).
- British Standards Institution (BSI). BS EN 15251—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; British Standards Institution (BSI): London, UK, 2007. [Google Scholar]
- British Standards Institution (BSI). BS EN 13779—Ventilation for Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems; British Standards Institution (BSI): London, UK, 2007. [Google Scholar]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Nguyen, A.T.; Singh, M.K.; Reiter, S. An Adaptive Thermal Comfort Model for Hot Humid South-East Asia. Build. Environ. 2012, 56, 291–300. [Google Scholar] [CrossRef] [Green Version]
- DeDear, R.J.; Brager, G.S. Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Trans. 1998, 104, 145–167. [Google Scholar]
- Nicol, F.; Roaf, S. Pioneering: New Indoor Temperature Standards the Pakistan Project. Energy Build. 1996, 23, 169–174. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Nicol, J.F.; Raja, I.A. Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach. Adv. Build. Energy Res. 2007, 1, 55–88. [Google Scholar] [CrossRef]
- Nicol, F.; Humphreys, M. Derivation of the Adaptive Equations for Thermal Comfort in Free-Running Buildings in European Standard EN15251. Build. Environ. 2010, 45, 11–17. [Google Scholar] [CrossRef]
Month | Average Temp (°C) | Mean Max Temp (°C) | Mean Min Temp (°C) | Temperature Difference (°C) | Relative Humidity (%) |
---|---|---|---|---|---|
January | 10.9 | 16.4 | 6.9 | 9.7 | 72.8 |
February | 12.8 | 16.4 | 6.5 | 10.3 | 71.7 |
March | 14.0 | 18.4 | 7.8 | 10.8 | 72.8 |
April | 16.2 | 22.2 | 10.5 | 11.8 | 70.7 |
May | 21.4 | 26.5 | 14.2 | 12.2 | 67.3 |
June | 26.0 | 30.6 | 18.4 | 13.2 | 64.3 |
July | 28.4 | 33.1 | 21.1 | 12.1 | 65.0 |
August | 28.4 | 33.3 | 21.4 | 12.1 | 67.3 |
September | 25.7 | 31.1 | 16.4 | 13.1 | 66.6 |
October | 22.8 | 27.2 | 15.3 | 11.8 | 67.5 |
November | 17.9 | 22.0 | 11.0 | 10.8 | 70.0 |
December | 13.7 | 17.6 | 7.5 | 9.5 | 73.2 |
Month | Average Wind Speed (m/s) | Percentages of Predominant Wind Directions (%) | |||
---|---|---|---|---|---|
North | East | South | West | ||
January | 5.0 | 35 | 25 | 10 | 30 |
February | 5.1 | 30 | 20 | 13 | 37 |
March | 4.6 | 30 | 13 | 12 | 45 |
April | 4.0 | 22 | 13 | 15 | 50 |
May | 3.5 | 18 | 7 | 15 | 60 |
June | 3.4 | 10 | 5 | 20 | 65 |
July | 3.5 | 10 | 3 | 27 | 60 |
August | 3.4 | 10 | 3 | 25 | 62 |
September | 3.3 | 15 | 5 | 15 | 65 |
October | 3.6 | 35 | 10 | 10 | 45 |
November | 4.3 | 45 | 20 | 10 | 25 |
December | 4.8 | 38 | 20 | 12 | 30 |
Building Geometric Parameters | Unit | Simulation Scenarios |
---|---|---|
Space aspect ratio (L/W) | – | 1:1 |
Space clear height | (m) | 3.0 |
Floor location | – | Ground, first, and second floor |
Window-to-floor ratio (WFR) | (%) | 10, 25, 50 (fully glazed wall) |
Window orientation | – | North, east, west, and south |
Window opening ratio | (%) | 0 (closed), 10, 25, 50, 75, 100 (fully open) |
Window shading ratio | (%) | N/A |
Natural ventilation strategy | – | Single-side for 10% & 25% WFR Cross-flow for 10% & 50% WFR |
Glass Type | Materials (Internal to External) | G Value | Light Transmittance | Emissivity Int./ext. | Conduct. (W/m2·°C) | U Value (W/m2·°C) | R Value (m2·°C/W) |
---|---|---|---|---|---|---|---|
Double glass | 4 mm clear glass, 10 mm air gap, 4 mm clear glass | 0.748 | 0.815 | 0.845 | 5.958 | 2.96 | 0.338 |
Construction | Materials (Internal to External) | Solar Absorptance | Emissivity Int./ext. | Conduct. (W/m2·°C) | U Value (W/m2·°C) | R Value (m2·°C/W) |
---|---|---|---|---|---|---|
External wall | Cement plaster 25 mm, clay hollow bricks 250 mm, cement plaster 25 mm | 0.400 | 0.900 | 0.416 | 0.388 | 2.576 |
Internal wall | Cement plaster 25 mm, clay hollow bricks 100 mm, cement plaster 25 mm | 0.400 | 0.900 | 0.745 | 0.661 | 1.512 |
Internal floor/ceiling | Concrete internal floor/ceiling 150 mm | 0.650 | 0.900 | 7.533 | 3.303 | 0.303 |
Ground floor | Tiles 25 mm, mortar 50 mm, concrete 125 mm, aggregate 75 mm, soil 1000 mm | 0.760 | 0.910 | 0.296 | 0.282 | 3.543 |
Roof | Cement plaster 25 mm, concrete 200 mm | 0.650 | 0.900 | 2.027 | 1.507 | 0.663 |
Internal Heat Gain Sources | Radiation Proportion | Coefficient |
---|---|---|
Lighting | 0.3 | 0.490 |
Occupant | 0.2 | 0.227 |
Equipment | 0.1 | 0.372 |
Internal Gain/System Inputs | Unit | Value |
---|---|---|
Outside air | L/s/p | 8.0 |
Metabolic rate | W/p | 126.0 |
Infiltration | ach | 0.3 |
Ventilation * | ach | 0.0 |
Lighting gain | W/m2 | 12.0 |
Occupancy sensible gain | W/m2 | 8.0 |
Occupancy latent gain | W/m2 | 5.0 |
Equipment sensible gain | W/m2 | 18.0 |
Equipment latent gain | W/m2 | 0.0 |
CO2 pollutant generation | L/h/m2 | 2.24 |
Category | CO2 Concentration (ppm) above Outdoor Air | The Accepted Limit for Famagusta (Outdoor CO2 of 400 ppm) | |
---|---|---|---|
Typical Range | Default Value | ||
I | ≤400 | 350 | 750 |
II | 400–600 | 500 | 900 |
III | 600–1000 | 800 | 1200 |
IV | >1000 | 1200 | 1600 |
Categories | Acceptable Comfort Range (°C) | Expectations | |
---|---|---|---|
Upper Limit | Lower Limit | ||
I | High | ||
II | Normal | ||
III | Moderate |
WFR (%) | Ventilation Strategy | Opening Ratio (%) | CO2 Categories | Window Orientations | |||
---|---|---|---|---|---|---|---|
S Win | E Win | N Win | W Win | ||||
10% 25% 50% | Single-side or Cross-flow | Closed | I | 0 | 0 | 0 | 0 |
II | 0 | 0 | 0 | 0 | |||
III | 261 | 261 | 261 | 261 | |||
IV | 1827 | 1827 | 1827 | 1827 | |||
10% | Single-side | 10% open | I | 515 | 444 | 269 | 314 |
II | 1239 | 1498 | 1561 | 1698 | |||
III | 282 | 134 | 234 | 7 | |||
IV | 52 | 12 | 24 | 4 | |||
25% open | I | 1891 | 2024 | 1980 | 2059 | ||
II | 153 | 50 | 93 | 25 | |||
III | 44 | 13 | 15 | 4 | |||
50% open | I | 2044 | 2083 | 2070 | 2085 | ||
II | 39 | 5 | 17 | 3 | |||
III | 5 | 0 | 1 | 0 | |||
75% open | I | 2085 | 2088 | 2087 | 2088 | ||
II | 3 | 0 | 1 | 0 | |||
III | 0 | 0 | 0 | 0 | |||
Fully open | I | 2088 | 2088 | 2088 | 2088 | ||
25% | Single-side | 10%open | I | 2039 | 2081 | 2043 | 2080 |
II | 37 | 7 | 40 | 8 | |||
III | 12 | 0 | 5 | 0 | |||
25%open | I | 2088 | 2088 | 2088 | 2088 |
WFR (%) | Ventilation Strategy | Opening Ratio (%) | CO2 Categories | Ground Floor Zones/Windows | First Floor Zones/Windows | Second Floor Zones/Windows | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z 1 (SE) | Z 2 (SW) | Z 3 (NW) | Z 4 (NE) | Z 5 (SE) | Z 6 (SW) | Z 7 (NW) | Z 8 (NE) | Z 9 (SE) | Z 10 (SW) | Z 11 (NW) | Z 12 (NE) | ||||
S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | ||||
10% | Cross-flow | 10% open | I | 1849 | 1492 | 1280 | 1505 | 1904 | 1533 | 1421 | 1653 | 1901 | 1549 | 1487 | 1710 |
II | 239 | 596 | 804 | 583 | 184 | 555 | 662 | 433 | 187 | 539 | 592 | 377 | |||
III | 0 | 0 | 4 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 9 | 1 | |||
25% open | I | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | ||
50% | Cross-flow | 10% open | I | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 | 2088 |
Window Opening Ratio (%) | Adaptive Comfort Categories | Ground Floor/Windows | First Floor/Windows | Second Floor/Windows | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z 1 (SE) | Z 3 (NW) | Z 5 (SE) | Z 7 (NW) | Z 9 (SE) | Z 11 (NW) | ||||||||
S Win | E Win | N Win | W Win | S Win | E Win | N Win | W Win | S Win | E Win | N Win | W Win | ||
0% | Category I | 0 | 0 | 285 | 161 | 0 | 8 | 299 | 197 | 9 | 92 | 357 | 276 |
Category II | 0 | 12 | 464 | 312 | 1 | 44 | 457 | 327 | 26 | 155 | 514 | 407 | |
Category III | 0 | 77 | 675 | 468 | 5 | 119 | 633 | 469 | 61 | 222 | 679 | 541 | |
10% | Category I | 36 | 223 | 804 | 622 | 47 | 238 | 718 | 556 | 177 | 378 | 617 | 532 |
Category II | 92 | 380 | 961 | 818 | 127 | 371 | 896 | 775 | 369 | 547 | 836 | 726 | |
Category III | 336 | 548 | 1049 | 919 | 327 | 521 | 1011 | 888 | 601 | 703 | 977 | 871 | |
25% | Category I | 516 | 606 | 603 | 637 | 435 | 538 | 613 | 620 | 611 | 555 | 573 | 565 |
Category II | 843 | 745 | 978 | 924 | 744 | 694 | 903 | 884 | 858 | 783 | 805 | 807 | |
Category III | 1017 | 883 | 1217 | 1099 | 955 | 811 | 1127 | 1052 | 990 | 926 | 1037 | 996 | |
50% | Category I | 918 | 607 | 497 | 529 | 825 | 577 | 499 | 543 | 803 | 570 | 459 | 507 |
Category II | 1045 | 918 | 784 | 840 | 987 | 828 | 803 | 819 | 985 | 810 | 754 | 767 | |
Category III | 1147 | 1067 | 1184 | 1128 | 1097 | 987 | 1109 | 1077 | 1097 | 1041 | 1015 | 1001 | |
75% | Category I | 902 | 620 | 448 | 498 | 855 | 574 | 468 | 501 | 764 | 572 | 437 | 480 |
Category II | 1088 | 887 | 741 | 786 | 1040 | 828 | 735 | 783 | 1003 | 787 | 698 | 734 | |
Category III | 1217 | 1119 | 1109 | 1081 | 1140 | 1044 | 1067 | 1059 | 1143 | 1042 | 972 | 1001 | |
100% | Category I | 866 | 576 | 407 | 472 | 837 | 574 | 431 | 475 | 727 | 511 | 416 | 455 |
Category II | 1092 | 857 | 719 | 746 | 1041 | 825 | 697 | 752 | 986 | 792 | 666 | 706 | |
Category III | 1282 | 1129 | 1077 | 1060 | 1185 | 1041 | 1023 | 1033 | 1181 | 1012 | 953 | 982 |
Window Opening Ratio (%) | Adaptive Comfort Categories | Ground Floor/Windows | First Floor/Windows | Second Floor/Windows | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z 1 (SE) | Z 3 (NW) | Z 5 (SE) | Z 7 (NW) | Z 9 (SE) | Z 11 (NW) | ||||||||
S Win | E Win | N Win | W Win | S Win | E Win | N Win | W Win | S Win | E Win | N Win | W Win | ||
0% | Category I | 0 | 0 | 307 | 99 | 0 | 0 | 317 | 127 | 1 | 10 | 354 | 178 |
Category II | 0 | 0 | 491 | 181 | 0 | 0 | 474 | 215 | 2 | 35 | 511 | 281 | |
Category III | 0 | 0 | 651 | 303 | 0 | 5 | 625 | 326 | 7 | 83 | 654 | 388 | |
10% | Category I | 65 | 294 | 571 | 566 | 65 | 270 | 584 | 532 | 137 | 393 | 554 | 511 |
Category II | 154 | 426 | 883 | 799 | 137 | 380 | 849 | 758 | 270 | 553 | 774 | 715 | |
Category III | 301 | 564 | 1149 | 948 | 259 | 513 | 1084 | 909 | 440 | 693 | 1007 | 897 | |
25% | Category I | 384 | 516 | 469 | 538 | 310 | 450 | 461 | 523 | 434 | 507 | 433 | 509 |
Category II | 642 | 703 | 730 | 781 | 549 | 635 | 723 | 760 | 661 | 707 | 701 | 725 | |
Category III | 837 | 829 | 1052 | 1031 | 770 | 770 | 1021 | 988 | 870 | 898 | 956 | 931 | |
50% | Category I | 675 | 549 | 407 | 478 | 581 | 514 | 421 | 483 | 644 | 522 | 408 | 457 |
Category II | 885 | 789 | 663 | 759 | 827 | 732 | 663 | 755 | 884 | 762 | 636 | 719 | |
Category III | 1057 | 965 | 968 | 1007 | 993 | 885 | 957 | 988 | 1062 | 963 | 917 | 952 | |
75% | Category I | 765 | 544 | 391 | 455 | 699 | 526 | 391 | 466 | 685 | 518 | 396 | 443 |
Category II | 966 | 794 | 653 | 734 | 910 | 749 | 635 | 733 | 949 | 770 | 627 | 703 | |
Category III | 1126 | 1006 | 958 | 1001 | 1069 | 938 | 920 | 985 | 1093 | 985 | 885 | 948 | |
100% | Category I | 785 | 552 | 385 | 465 | 746 | 527 | 378 | 461 | 705 | 517 | 387 | 434 |
Category II | 999 | 802 | 640 | 705 | 950 | 765 | 628 | 721 | 972 | 783 | 631 | 691 | |
Category III | 1155 | 1024 | 965 | 989 | 1096 | 967 | 911 | 974 | 1123 | 994 | 867 | 942 |
WFR (%) | Ventilation Strategy | Opening Ratio (%) | CO2 Categories | Ground Floor Zones/Windows | First Floor Zones/Windows | Second Floor Zones/Windows | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z 1 (SE) | Z 2 (SW) | Z 3 (NW) | Z 4 (NE) | Z 5 (SE) | Z 6 (SW) | Z 7 (NW) | Z 8 (NE) | Z 9 (SE) | Z10 (SW) | Z11 (NW) | Z12 (NE) | ||||
S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | ||||
10% | Cross-flow | 10% open | I | 409 | 494 | 676 | 666 | 443 | 500 | 638 | 595 | 614 | 600 | 554 | 575 |
II | 646 | 807 | 932 | 864 | 670 | 781 | 873 | 839 | 819 | 835 | 793 | 823 | |||
III | 869 | 984 | 1066 | 1031 | 897 | 969 | 1019 | 1021 | 991 | 956 | 957 | 1019 | |||
25% open | I | 801 | 855 | 479 | 639 | 787 | 790 | 473 | 601 | 706 | 677 | 450 | 543 | ||
II | 1002 | 1029 | 774 | 938 | 989 | 974 | 742 | 893 | 942 | 902 | 688 | 809 | |||
III | 1169 | 1105 | 1089 | 1172 | 1132 | 1121 | 1029 | 1088 | 1133 | 1085 | 956 | 1027 | |||
50% open | I | 660 | 678 | 412 | 537 | 637 | 629 | 404 | 525 | 550 | 539 | 375 | 476 | ||
II | 1022 | 1012 | 671 | 783 | 991 | 940 | 649 | 755 | 887 | 848 | 633 | 701 | |||
III | 1256 | 1147 | 996 | 1091 | 1211 | 1209 | 969 | 1039 | 1158 | 1127 | 917 | 983 | |||
75% open | I | 572 | 520 | 388 | 473 | 556 | 496 | 385 | 467 | 476 | 458 | 377 | 449 | ||
II | 949 | 951 | 648 | 722 | 907 | 919 | 635 | 701 | 796 | 824 | 619 | 677 | |||
III | 1267 | 1191 | 1023 | 1079 | 1206 | 1213 | 935 | 1005 | 1137 | 1111 | 902 | 948 | |||
Fully open | I | 525 | 466 | 392 | 421 | 501 | 451 | 374 | 432 | 457 | 422 | 381 | 408 | ||
II | 876 | 880 | 649 | 704 | 841 | 850 | 618 | 686 | 758 | 786 | 609 | 659 | |||
III | 1290 | 1206 | 1018 | 1080 | 1198 | 1213 | 960 | 1009 | 1124 | 1110 | 910 | 958 |
WFR (%) | Ventilation Strategy | Opening Ratio (%) | CO2 Categories | Ground Floor Zones/Windows | First Floor Zones/Windows | Second Floor Zones/Windows | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z 1 (SE) | Z 2 (SW) | Z 3 (NW) | Z 4 (NE) | Z 5 (SE) | Z 6 (SW) | Z 7 (NW) | Z 8 (NE) | Z 9 (SE) | Z10 (SW) | Z11 (NW) | Z12 (NE) | ||||
S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | S + E Win | S + W Win | N + W Win | N + E Win | ||||
50% | Cross-flow | 10% open | I | 212 | 295 | 443 | 480 | 221 | 304 | 443 | 472 | 352 | 364 | 425 | 488 |
II | 324 | 460 | 714 | 721 | 339 | 465 | 681 | 689 | 500 | 536 | 653 | 713 | |||
III | 462 | 649 | 950 | 925 | 483 | 655 | 917 | 908 | 652 | 747 | 887 | 821 | |||
25% open | I | 424 | 539 | 431 | 503 | 423 | 525 | 423 | 490 | 484 | 536 | 405 | 485 | ||
II | 611 | 813 | 649 | 741 | 600 | 771 | 636 | 730 | 692 | 787 | 628 | 707 | |||
III | 772 | 887 | 931 | 986 | 770 | 984 | 913 | 950 | 897 | 976 | 876 | 929 | |||
50% open | I | 511 | 681 | 419 | 485 | 488 | 655 | 411 | 483 | 505 | 631 | 398 | 443 | ||
II | 722 | 914 | 631 | 740 | 703 | 886 | 638 | 722 | 775 | 859 | 636 | 703 | |||
III | 935 | 952 | 909 | 972 | 918 | 1061 | 894 | 944 | 983 | 1029 | 871 | 915 | |||
75% open | I | 544 | 719 | 415 | 469 | 516 | 676 | 402 | 463 | 535 | 640 | 392 | 451 | ||
II | 784 | 940 | 645 | 730 | 757 | 914 | 626 | 718 | 799 | 889 | 628 | 701 | |||
III | 983 | 971 | 880 | 958 | 963 | 1079 | 877 | 928 | 1014 | 1041 | 860 | 907 | |||
Fully open | I | 557 | 722 | 417 | 481 | 544 | 692 | 399 | 466 | 542 | 637 | 392 | 448 | ||
II | 812 | 955 | 631 | 727 | 788 | 918 | 627 | 716 | 817 | 894 | 614 | 693 | |||
III | 1015 | 974 | 869 | 945 | 993 | 1088 | 857 | 932 | 1027 | 1044 | 857 | 917 |
Ventilation Strategy | Window Size (WFR) | Effective Openings * | Window Openings (%) and Best/Worst Orientations | |||||
---|---|---|---|---|---|---|---|---|
10% | 25% | 50%, 75%, 100% | ||||||
Best | Worst | Best | Worst | Best | Worst | |||
Single-side | 10% | None | West, East | South | West | South | West, East | South |
25% | All openings | All occupancy hours appear in category I | ||||||
Cross-flow | 10% | None | South + East | North + West | All occupancy hours appear in category I | |||
50% | All openings | All occupancy hours appear in category I |
Ventilation Strategy | Window Size (WFR) | Effective Openings * | Window Openings (%) and Best/Worst Orientations | |||||
---|---|---|---|---|---|---|---|---|
10% | 25% | 50%, 75%, 100% | ||||||
Best | Worst | Best | Worst | Best | Worst | |||
Single-side | 10% | All openings | North | South | North, West | East | South | North |
25% | None | North | South | West | South | |||
Cross-flow | 10% | 10%, 25% | North + West | South + East | South + East | North + West | South + East | North + West |
50% | 50%, 75%, 100% | North + East | South + West | South + West |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, H.K.; Alibaba, H.Z. Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance. Sustainability 2020, 12, 473. https://doi.org/10.3390/su12020473
Abdullah HK, Alibaba HZ. Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance. Sustainability. 2020; 12(2):473. https://doi.org/10.3390/su12020473
Chicago/Turabian StyleAbdullah, Hardi K., and Halil Z. Alibaba. 2020. "Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance" Sustainability 12, no. 2: 473. https://doi.org/10.3390/su12020473
APA StyleAbdullah, H. K., & Alibaba, H. Z. (2020). Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO2 and Thermal Comfort Performance. Sustainability, 12(2), 473. https://doi.org/10.3390/su12020473