The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Collection and Processing
3. Methods
3.1. Image-Based Atmospheric Correction Method
3.2. Retrieval of Land Cover
3.2.1. Retrieval of Vegetation Index
3.2.2. Retrieval of Water Index
3.2.3. Retrieval of Bare Land Index
3.2.4. Retrieval of Impervious Surface Area
3.2.5. Impervious Surface Expansion Index (ISEI) and Fan Analysis
3.3. Retrieval of Land Surface Temperature (LST)
3.4. LST Normalization and Determination of Urban Heat Island Ratio Index (URI)
3.5. Statistical Analysis
4. Results and Discussion
4.1. Changes in Urban Impervious Surface Area (ISA)
4.2. Changes in Urban Heat Islands
4.3. Relationships between LST and ISA%, Vegetation Fraction, and NDVI
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaz, E.; Aversa, J. A Graph theory approach for geovisualization of land use change: An application to Lisbon. J. Spat. Organ. Dyn. 2013, 1, 254–264. [Google Scholar]
- 2018 Revision of World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 16 May 2018).
- Residency Shift Part of Plan to Boost Urban Base. Available online: http://en.ce.cn/main/latest/201904/09/t20190409_31819121.shtml (accessed on 4 April 2019).
- National Bureau of Statistics of China. China Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019.
- Xu, H.; Lin, D.; Tang, F. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China. Int. J. Climatol. 2013, 33, 1873–1883. [Google Scholar] [CrossRef]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in tampa bay and Las Vegas using landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Wu, J.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Ye, L.P.; Shi, W.Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- Mountrakis, G.; Luo, L. Enhancing and replacing spectral information with intermediate structural inputs: A case study on impervious surface detection. Remote Sens. Environ. 2011, 115, 1162–1170. [Google Scholar] [CrossRef]
- Voorde, T.V.D.; Roeck, T.D.; Canters, F. A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas. Int. J. Remote Sens. 2009, 30, 4785–4806. [Google Scholar] [CrossRef]
- Okujeni, A.; Linden, S.V.D.; Hostert, P. Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning. Remote Sens. Environ. 2015, 158, 69–80. [Google Scholar] [CrossRef]
- Mohapatra, R.P.; Wu, C. High resolution impervious surface estimation. Photogramm. Eng. Remote Sens. 2010, 76, 1329–1341. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. Int. J. Appl. Earth Obs. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Carlson, T.N.; Arthur, S.T. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Xu, H.Q. Analysis of Impervious Surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y.X. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.F.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Sun, G.Y.; Chen, X.L.; Jia, X.P.; Yao, Y.J.; Wang, Z.J. Combinational Build-Up Index (CBI) for effective impervious surface mapping in urban areas. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2081–2092. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imur, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Xiong, Y.Z.; Huang, S.P.; Chen, F.; Ye, H.; Wang, C.P.; Zhu, C.B. The Impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, south China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.Z.; Liao, J.F.; Chen, H.X.; Chen, D.K.; Shao, G.F. Assessment of ecological risks induced by land use and land cover changes in Xiamen city, China. Int. J. Sustain. Dev. World Ecol. 2018, 25, 439–447. [Google Scholar] [CrossRef]
- Hua, L.Z.; Tang, L.N.; Cui, S.H.; Yin, K. Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustainability 2014, 6, 3899–3914. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.N.; Zhao, Y.; Yin, K.; Zhao, J. City profile: Xiamen. Cities 2013, 31, 615–624. [Google Scholar] [CrossRef]
- Hua, L.Z.; Li, X.Q.; Tang, L.N.; Yin, K.; Zhao, Y. Spatio-temporal dynamic analysis of island-city landscape: A case study of Xiamen Island, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 273–278. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-based atmospheric corrections—Revisited and revised. Photogramm. Eng. Rem. Sens. 1996, 62, 1025–1036. [Google Scholar]
- Lu, D.; Mausel, P. Assessment of atmospheric correction methods applicable to Amazon basin LBA research. Int. J. Remote Sens. 2002, 23, 2651–2671. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Lee, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, M.Y.; Xu, H.Q. Temporal and spatial changes of urban impervious surface and its influence on urban ecolo-gical quality: A comparison between Shanghai and New York. J. Appl. Ecol. 2018, 29, 236–247. [Google Scholar]
- Hua, L.Z.; Zhang, X.X.; Chen, X.; Kai, K.; Tang, L.N. A feature-based approach of decision tree classification to map time series urban land use and land cover with Landsat 5 TM and Landsat 8 OLI in a coastal city, China. ISPRS Int. J. Geo. Inf. 2017, 6, 331. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Li, B.; Ti, C.; Zhao, Y.; Yan, X. Estimating soil moisture with Landsat data and its application in extracting the spatial distribution of winter flooded paddies. Remote Sens. 2016, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Man, W.; Nie, Q.; Hua, L.Z.; Wu, X.W.; Li, H. Spatio-temporal variations in impervious surface patterns during urban expansion in a coastal city: Xiamen, China. Sustainability 2019, 11, 2404. [Google Scholar] [CrossRef] [Green Version]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Muoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martinez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Zheng, P.; Pan, W. Quantifying the impact of land use/land cover changes on the urban heat island: A case study of the natural wetlands distribution area of Fuzhou City, China. Wetlands 2016, 36, 285–298. [Google Scholar] [CrossRef]
- Xu, H.Q.; Chen, B.Q. Remote sensing of the urban heat island and its changes in Xiamen city of SE China. Int. J. Remote Sens. 2004, 16, 276–281. [Google Scholar]
- Liu, Y.X.; Peng, J.; Wang, Y.L. Diversification of land surface temperature change under urban landscape renewal: A case study in the main city of Shenzhen, China. Remote Sens. 2017, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.L.; Wang, T.X. Comparison analyses of equal interval method and mean-standard deviation method used to delimitate urban heat island. Geo Inf. Sci. 2009, 11, 145–150. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Xu, H.Q.; Hu, X.; Guan, H.; Guan, H.D.; Zhang, B.B.; Wang, M.Y.; Chen, S.M.; Chen, M.H. A remote sensing based method to detect soil erosion in forests. Remote Sens. 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.F.; Huang, J.; Ye, H.; Wang, K.; Qiu, Q.Y. Spatiotemporal changes of the urban heat island of a coastal city in the context of urbanisation. Int. J. Sustain. Dev. World Ecol. 2010, 17, 311–316. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh City, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
Image Type | Image Acquisition Date | Sun Elevation Angle (Degrees) | Path/Row | Cloud Cover (%) |
---|---|---|---|---|
Landsat 8 OLI/TIRS | 27 July 2016 | 66.42 | 119/43 | 1.81 |
Landsat 5 TM | 06 Jun 2009 | 66.34 | 119/43 | 0.31 |
Landsat 5 TM | 23 May 2004 | 64.68 | 119/43 | 0.00 |
Landsat 5 TM | 20 July 1996 | 56.60 | 119/43 | 0.16 |
Landsat 5 TM | 15 Jun 1989 | 61.40 | 119/43 | 1.71 |
Sensor | TCs | Coastal | Blue | Green | Red | NIR | SWIR1 | SWIR2 |
---|---|---|---|---|---|---|---|---|
Landsat 5 TM | TC1 | - | 0.2043 | 0.4158 | 0.5524 | 0.5741 | 0.3124 | 0.2303 |
TC2 | - | −0.1603 | −0.2819 | −0.4934 | 0.7940 | −0.0002 | −0.1446 | |
TC3 | - | 0.0315 | 0.2021 | 0.3102 | 0.1594 | −0.6806 | −0.6109 | |
Landsat 8 OLI/TIRS | TC1 | 0.2540 | 0.3037 | 0.3608 | 0.3564 | 0.7084 | 0.2358 | 0.1691 |
TC2 | −0.2578 | −0.3064 | −0.3300 | −0.4325 | 0.6860 | −0.0383 | −0.2674 | |
TC3 | 0.1877 | 0.2097 | 0.2038 | 0.1017 | 0.0685 | −0.7460 | −0.5548 |
Level | Ui Value | UHI Meaning | Description |
---|---|---|---|
1 | ≤Tm − 1.5Std | Very low-temperature zone | No UHI distribution zone |
2 | >Tm − 1.5Std and ≤Tm − 0.5Std | Low-temperature zone | |
3 | >Tm − 0.5Std and ≤Tm | Moderate temperature zone | |
4 | >Tm and ≤ Tm + 0.5Std | Sub-high-temperature zone | |
5 | >Tm + 0.5Std and ≤Tm + 1.5Std | High-temperature zone | UHI distribution zone |
6 | >Tm + 1.5Std | Very high-temperature zone |
District | Period | Increase in ISA (km2) | ΔISEI | Expansion Direction |
---|---|---|---|---|
Xiamen Island | 1989–1996 | 22.94 | 0.205 | NE-ENE-E |
1996–2004 | 25.81 | 0.202 | NE-ENE-E | |
2004–2009 | 16.67 | 0.208 | NE-ENE-E | |
2009–2016 | 5.89 | 0.053 | NE | |
Jimei | 1989–1996 | 10.40 | 0.093 | W |
1996–2004 | 15.45 | 0.121 | W | |
2004–2009 | 24.65 | 0.308 | W-WNW-NW | |
2009–2016 | 29.90 | 0.267 | W-WNW-NW | |
Haicang | 1989–1996 | 8.41 | 0.075 | NW |
1996–2004 | 19.81 | 0.155 | NW, WSW | |
2004–2009 | 15.44 | 0.193 | NW-WNW, WSW | |
2009–2016 | 21.26 | 0.190 | NW-WNW, WSW | |
Tong’an | 1989–1996 | 9.17 | 0.082 | SSW |
1996–2004 | 15.22 | 0.119 | S-SSW | |
2004–2009 | 31.51 | 0.394 | S-SSW-SW | |
2009–2016 | 34.45 | 0.308 | S-SSW-SW | |
Xiang’an | 1989–1996 | 5.07 | 0.045 | N |
1996–2004 | 13.52 | 0.106 | N | |
2004–2009 | 23.10 | 0.289 | NNW-N-NNE | |
2009–2016 | 30.78 | 0.275 | NNW-N-NNE |
Year | Non-Impervious Areas | Impervious Areas | ||||||
---|---|---|---|---|---|---|---|---|
Tmin | Tmax | Tmean | SD | Tmin | Tmax | Tmean | STD | |
1989 | 297.10 | 307.91 | 301.06 | 1.56 | 298.05 | 307.91 | 304.62 | 1.56 |
1996 | 295.35 | 304.74 | 299.22 | 1.55 | 296.73 | 304.74 | 302.14 | 1.23 |
2004 | 295.44 | 307.56 | 299.54 | 1.31 | 295.44 | 307.56 | 302.55 | 1.68 |
2009 | 295.80 | 312.64 | 301.49 | 1.74 | 298.68 | 312.64 | 305.42 | 1.94 |
2016 | 296.45 | 323.11 | 307.20 | 3.07 | 301.55 | 323.11 | 313.56 | 2.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, L.; Zhang, X.; Nie, Q.; Sun, F.; Tang, L. The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability 2020, 12, 475. https://doi.org/10.3390/su12020475
Hua L, Zhang X, Nie Q, Sun F, Tang L. The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability. 2020; 12(2):475. https://doi.org/10.3390/su12020475
Chicago/Turabian StyleHua, Lizhong, Xinxin Zhang, Qin Nie, Fengqin Sun, and Lina Tang. 2020. "The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China" Sustainability 12, no. 2: 475. https://doi.org/10.3390/su12020475
APA StyleHua, L., Zhang, X., Nie, Q., Sun, F., & Tang, L. (2020). The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability, 12(2), 475. https://doi.org/10.3390/su12020475