Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater
Abstract
:1. Introduction
2. Methodology
- Silva Cells®;
- Fly-ash based Geopolymer concrete pavers;
- Populus detoides (P. deltoides) trees in soil media;
- In-situ sensors with data collection system.
- excavation of existing soil up to 500 mm in depth;
- placement of impermeable membrane throughout the base;
- placement of Silva Cells®;
- plantation of poplar trees within the Silva Cells with organic soil near tree roots;
- filling the Silva Cells with gravel (clear crush)
- embedded pH, turbidity and electrical conductivity sensors at the inlet of wastewater entering through a PVC pipe, as well as at the outlet of treated water;
- connection of all sensor cables to the data acquisition system;
- placement of GC pavers on top of the Silva Cells®; and
- placement of perforated pipes at various intervals throughout the site.
3. Experimentation
3.1. Procurement and Nurturing of Poplar Trees
3.2. Site Preparation for LID System
4. Results and Discussions
4.1. Growth Biometrics of Poplar Trees
4.2. Physico-Chemical Parameter Analysis of Car Wash Water Pre- and Post-Treatment
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resour.-Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. In Integrated Assessment of Water Resources and Global Change: A North-South Analysis; Craswell, E., Bonnell, M., Bossio, D., Demuth, S., Van De Giesen, N., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 35–48. ISBN 978-1-4020-5591-1. [Google Scholar]
- Joseph, N.; Ryu, D.; Malano, H.M.; George, B.; Sudheer, K.P. Anshuman Estimation of industrial water demand in India using census-based statistical data. Resour. Conserv. Recycl. 2019, 149, 31–44. [Google Scholar] [CrossRef]
- Joshi, R.; Ahmed, S. Status and challenges of municipal solid waste management in India: A review. Cogent Environ. Sci. 2016, 2, 1139434. [Google Scholar] [CrossRef]
- Water Pollution—India Environment Portal|News, Reports, Documents, Blogs, Data, Analysis on Environment & Development|India, South Asia. Available online: http://www.indiaenvironmentportal.org.in/category/28/thesaurus/water-pollution/ (accessed on 20 April 2020).
- Scheinberg, A.; Wilson, D.C.; Rodic-Wiersma, L. Solid Waste Management in the World’s Cities; UN-Habitat: Washington, DC, USA, 2010; ISBN 978-1-84971-170-8. [Google Scholar]
- Esplugas, S.; Gimenez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Comparison of different advanced oxidation processes for phenol degradation. Water Res. 2002, 36, 1034–1042. [Google Scholar] [CrossRef]
- LaPara, T.M.; Alleman, J.E. Thermophilic aerobic biological wastewater treatment. Water Res. 1999, 33, 895–908. [Google Scholar] [CrossRef]
- Bolto, B.; Dixon, D.; Eldridge, R.; King, S.; Linge, K. Removal of natural organic matter by ion exchange. Water Res. 2002, 36, 5057–5065. [Google Scholar] [CrossRef]
- Mavros, P.; Daniilidou, A.C.; Lazaridis, N.K.; Stergiou, L. Colour removal from aqueous solutions. Part I. Flotation. Environ. Technol. 1994, 15, 601–616. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Lazaridis, N.K.; Grohmann, A. Toxic metals removal from waste waters by upflow filtration with floating filter medium. I. The case of zinc. Sep. Sci. Technol. 2002, 37, 403–416. [Google Scholar] [CrossRef]
- Khan, U.T.; Valeo, C.; Chu, A.; van Duin, B. Bioretention cell efficacy in cold climates: Part 1 — hydrologic performance. Can. J. Civ. Eng. 2012, 39, 1210–1221. [Google Scholar] [CrossRef]
- Doty, S.L. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008, 179, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Arthur, E.L.; Rice, P.J.; Rice, P.J.; Anderson, T.A.; Baladi, S.M.; Henderson, K.L.D.; Coats, J.R. Phytoremediation—An Overview. Crit. Rev. Plant Sci. 2005, 24, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.A.; Sharma, S.; Ali, I. Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: Equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Health Sci. 2011, 3, 286–297. [Google Scholar] [CrossRef]
- Garg, M.; Valeo, C.; Gupta, R.; Prasher, S.; Sharma, N.R.; Constabel, P. Integrating natural and engineered remediation strategies for water quality management within a low-impact development (LID) approach. Environ. Sci. Pollut. Res. 2018, 25, 29304–29313. [Google Scholar] [CrossRef] [Green Version]
- Asha, M.N.; Chandan, K.S.; Harish, H.P.; NikhileswarReddy, S.; Sharath, K.S.; Liza, G.M. Recycling of Waste Water Collected from Automobile Service Station. Procedia Environ. Sci. 2016, 35, 289–297. [Google Scholar] [CrossRef]
- Parametric Studies on Compressive Strength of Geopolymer Concrete-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1877705813000313 (accessed on 9 September 2020).
- Gupta, R.; Rathod, H.M. Current state of K-based geopolymer cements cured at ambient temperature. Emerg. Mater. Res. 2015, 4, 125–129. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R. Comparative Study Involving Effect of Curing Regime on Elastic Modulus of Geopolymer Concrete. Buildings 2020, 10, 101. [Google Scholar] [CrossRef]
- Barac, T.; Weyens, N.; Oeyen, L.; Taghavi, S.; van der Lelie, D.; Dubin, D.; Spliet, M.; Vangronsveld, J. Field Note: Hydraulic Containment of a Btex Plume Using Poplar Trees. Int. J. Phytoremediation 2009, 11, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Clonal Variation in Survival and Growth of Hybrid Poplar and Willow in an IN SITU Trial on Soils Heavily Contaminated with Petroleum Hydrocarbons. Int. J. Phytoremediation 2005, 7, 177–197. [CrossRef]
- Zalesny, J.A.; Zalesny, R.S.; Coyle, D.R.; Hall, R.B. Growth and biomass of Populus irrigated with landfill leachate. For. Ecol. Manag. 2007, 248, 143–152. [Google Scholar] [CrossRef]
- EPA. Parameters of Water Quality: Interpretation and Standards; Environmental Protection Agency Ireland: Wexford, Ireland, 2001. [Google Scholar]
- Indian Standard. Drinking Water-Specification, 1st Revision, IS 10500. 1991. Available online: https://www.google.com/search?client=firefox-b-d&q=Indian+Standard%2C+Drinking+water-specification%2C+1st+Revision%2C+IS+10500+%281991%29 (accessed on 9 September 2020).
- Berthelot, C.; Blaudez, D.; Leyval, C. Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int. J. Phytoremediation 2017, 19, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Rusydi, A.F. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
Model | HOBO RX3002 Wi-Fi |
---|---|
Operating Range | −40° to 60 °C |
Module Slots | 2 |
Logging Rate | 1 s |
Battery Type | 4V, 10AHr, rechargeable sealed lead-acid |
Memory | 32MB |
LCD | LCD is visible from 0° to 50 °C |
Size | 18.6 × 18.1 × 11.8 cm |
Weight | 2.2 kg |
Sensor | pH | Turbidity | Conductivity |
---|---|---|---|
Range | 0–14 pH | 0-50NTU, 0-1000NTU | 200–2000 µS/cm, 2–20 mS/cm |
Accuracy | 2% of full scale | +/− 1% of full scale | +/− 0.5% of reading |
Operating Voltage | 10–30 VDC | 10–36 VDC | 10–36 VDC |
Current Draw | 5.5mA plus sensor output | 30mA plus sensor output | 20mA plus sensor output |
Operating Temperature | −5 °C to +55 °C | −10 °C to +50 °C | −5 °C to +70 °C |
Warm-up Time | 3 s minimum | 5 s minimum | 3 s minimum |
Size of Probe | 3.2 cm diameter × 25.4 cm long | 3.8 cm diameter × 21.6 cm long | 22 cm diameter × 20.2 cm long |
Weight | 454 g | 454 g | 227 g |
Permissible Limit | Agricultural Field | Mehat Car Wash Site | |||
---|---|---|---|---|---|
Soil | Water | Soil | Water | ||
pH | 5.5–8.5 | 7.29 | 7.32 | 7.83 | 7.33 |
TDS (mg/L) | 2000 | — | 267 | — | 381 |
EC (mS/cm) | 1000 | 0.412 | 0.503 | 0.355 | 0.63 |
Parameter | Day 1 | Day 60 | Day 67 | Day 74 | Day 81 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Field Site | Car Wash | Field Site | Car Wash | Field Site | Car Wash | Field Site | Car Wash | Field Site | Car Wash | |
Number of leaves | 0 | 0 | 38 ±12.2 | 30.4 ± 3.8 | 73.6 ± 26.3 | 30.6 ± 32.3 | 99.6 ± 17.1 | 45.8 ± 47.0 | 119 ± 19.8 | 52.8 ± 54.4 |
Height of plants (cm) | 340 ± 12.2 | 343 ± 6.8 | 340.1 ± 12.2 | 343.2 ± 6.8 | 340.1 ± 12.2 | 343.2 ± 6.8 | 340.1 ± 12.2 | 343.2 ± 6.8 | 340.1 ±12.2 | 343.2 ± 6.84 |
Number of branches | 0 | 0 | 14.4 ± 8.6 | 0.6 ± 0.6 | 14.6 ±3.3 | 3.4 ± 3.8 | 16.8 ± 0.9 | 5.8 ± 6.3 | 15.8 ± 2.5 | 7.4 ± 8.2 |
Diameter at breast height (cm) | 0.67 ± 0.07 | 0.62 ± 0.05 | 0.67 ± 0.07 | 0.62 ± 0.05 | 0.67 ± 0.07 | 0.62 ± 0.05 | 0.67 ± 0.07 | 0.62 ± 0.04 | 0.67 ± 0.07 | 0.62 ± 0.05 |
Girth diameter (cm) | 0.84 ± 0.13 | 0.68 ± 0.03 | 0.84 ± 0.13 | 0.68 ± 0.03 | 0.84 ± 0.13 | 0.68 ± 0.02 | 0.84 ± 0.13 | 0.68 ± 0.03 | 0.84 ± 0.13 | 0.68 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.; Sharma, N.R.; Valeo, C.; Garg, M.; Sharma, A.; Aneja, S.; Prasher, S.O.; Constabel, C.P. Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater. Sustainability 2020, 12, 8472. https://doi.org/10.3390/su12208472
Gupta R, Sharma NR, Valeo C, Garg M, Sharma A, Aneja S, Prasher SO, Constabel CP. Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater. Sustainability. 2020; 12(20):8472. https://doi.org/10.3390/su12208472
Chicago/Turabian StyleGupta, Rishi, Neeta Raj Sharma, Caterina Valeo, Mohit Garg, Ashutosh Sharma, Sakshi Aneja, Shiv O. Prasher, and C. Peter Constabel. 2020. "Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater" Sustainability 12, no. 20: 8472. https://doi.org/10.3390/su12208472
APA StyleGupta, R., Sharma, N. R., Valeo, C., Garg, M., Sharma, A., Aneja, S., Prasher, S. O., & Constabel, C. P. (2020). Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater. Sustainability, 12(20), 8472. https://doi.org/10.3390/su12208472