Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg
Abstract
:1. Introduction
2. Literature Review
3. The Slab Building
4. Methods
4.1. Overheating Risk Assessment According to Luxembourgish Regulation
4.2. Simulation Model and Building Model
4.2.1. Opaque Walls on the Module Envelope
4.2.2. Transparent Walls on the Module Envelope
4.3. Simulation Parameters
4.3.1. Simulation Period and Weather Data File
4.3.2. Occupancy Scenarios and Mechanical Ventilation Airflow
4.3.3. Internal Gains
4.3.4. Sub-Variants
4.3.5. Air Exchange Rates
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change and Land: IPCC Report; IPCC: Geneva, Switzerland, 2019; p. 906. [Google Scholar]
- Shell. Shell Scenarios: Sky-Meeting the Goals of the Paris Agreement; Shell: London, UK, 2018; p. 70. [Google Scholar]
- Boucher, O.; Braconnot, P.; Masson-Delmotte, V.; Salas, D. Changement climatique: Les résultats des nouvelles simulations françaises. In Proceedings of the Conférence de Presse Changement Climatique: Les Résultats des Nouvelles Simulations Françaises, Paris, France, 19 September 2019; pp. 1–32. [Google Scholar]
- European Commission. A Strategy for Competitive, Sustainable and Secure Energy; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- UNEP. Buildings and Climate Change: Summary for Decision Makers; UNEP DTIE Sustainable Consumption & Production Branch: Paris, France, 2009; p. 56. [Google Scholar]
- The European Parliament and of the Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- The European Parliament and of the council of the European Union. Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018 on the energy performance of buildings. Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar]
- Sacks, R.; Eastman, C.M.; Lee, G. Process Model Perspectives on Management and Engineering Procedures in the Precast/Prestressed Concrete Industry. J. Constr. Eng. Manag. 2004, 130, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Kasperzyk, C.; Kim, M.-K.; Brilakis, I. Automated re-prefabrication system for buildings using robotics. Autom. Constr. 2017, 83, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Rogan, A.L.; Lawson, R.M.; Bates-Brkljac, N. Value and Benefits Assessment of Modular Construction; The Steel Construction Institute: London, UK, 2000. [Google Scholar]
- Lopez, D.; Froese, T. Analysis of Costs and Benefits of Panelized and Modular Prefabricated Homes. Procedia Eng. 2016, 145, 1291–1297. [Google Scholar] [CrossRef]
- Badir, Y.F.; Kadir, M.R.A.; Hashim, A.H. Industrialized Building Systems Construction in Malaysia. J. Arch. Eng. 2002, 8, 19–23. [Google Scholar] [CrossRef]
- Boyd, N.; Khalfan, M.M.; Maqsood, T. Off-Site Construction of Apartment Buildings. J. Arch. Eng. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Stora Enso Projects -Lintuviita Seinäjoki, Finland. 2013. Available online: https://www.clt.info/en/projekte/detail/?slideId=4086&category= (accessed on 15 February 2019).
- Dezeen Magazine. World’s Tallest Modular Tower Is Now Clement Canopy in Singapore. 2019. Available online: https://www.dezeen.com/2019/07/02/clement-canopy-worlds-tallest-modular-tower-bouygues (accessed on 20 October 2019).
- Adekunle, T.O.; Nikolopoulou, M. Thermal comfort, summertime temperatures and overheating in prefabricated timber housing. Build. Environ. 2016, 103, 21–35. [Google Scholar] [CrossRef]
- Fifield, L.; Lomas, K.J.; Giridharan, R.; Allinson, D. Hospital wards and modular construction: Summertime overheating and energy efficiency. Build. Environ. 2018, 141, 28–44. [Google Scholar] [CrossRef]
- Yoo, H.-Y.; Park, Y.-J.; Yoon, J.-Y. A Study on the Improving Direction of Container Housing through Field Survey—Based on the Analysis of 12 cases in the Urban Area. J. Korean Hous. Assoc. 2012, 23, 21–30. [Google Scholar] [CrossRef]
- Aye, L.; Ngo, T.; Crawford, R.H.; Gammampila, R.; Mendis, P. Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy Build. 2012, 47, 159–168. [Google Scholar] [CrossRef]
- Silva, M.F.; Jayasinghe, L.B.; Waldmann, D.; Hertweck, F. Recyclable Architecture: Prefabricated and Recyclable Typologies. Sustainability 2020, 12, 1342. [Google Scholar] [CrossRef] [Green Version]
- Galinsky. Unité D’habitation (Cité Radieuse), Marseille. 2011. Available online: http://www.galinsky.com/buildings/marseille/ (accessed on 24 July 2020).
- Tamari, T. Metabolism: Utopian Urbanism and the Japanese Modern Architecture Movement. Theory. Cult. Soc. 2014, 31, 201–225. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2004. Thermal Eenvironmental Conditions for Human Occupancy; ANSI/ASHRAE: Sacramento, CA, USA, 2017; Volume 7, p. 6. [Google Scholar]
- Ulloa, C.; Fariña, E.A.; Rey, G.; Míguez, J.L.; Hernández, J. Recycling COR-TEN® Sea Containers into Service Modules for Military Applications: Thermal Analysis. Energies 2017, 10, 820. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- International Organization for Standardization. Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling; ISO 13790:2008; International Organization for Standardization: Geneva, Switzerland, 2008; p. 162. [Google Scholar]
- Košir, M.; Iglič, N.; Kunič, R. Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics. Renew. Energy 2018, 129, 527–539. [Google Scholar] [CrossRef]
- European Committee for Standardization. Energy Performance of Buildings-Impact of Building Automation, Controls and Building Management; CEN EN 15232; European Committee for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Inhabitat®. Futuristic Vertical City Holds Plug-in Hexagonal Housing Units. 2010. Available online: https://inhabitat.com/plug-your-hexagonal-house-into-this-vertical-city/ (accessed on 2 October 2020).
- Le Pair, G. Plug-in Architecture, a Modular System to Gain Individual Movability, Extendibility and Personalization; Eindhoven University of Technology: Eindhoven, The Netherlands, 2016. [Google Scholar]
- Lin, Z. Nakagin Capsule Tower: Revisiting the Future of the Recent Past. J. Arch. Educ. 2011, 65, 13–32. [Google Scholar] [CrossRef]
- Richner, P.; Heer, P.; Largo, R.; Marchesi, E.; Zimmermann, M. NEST-A platform for the acceleration of innovation in buildings. Inf. Constr. 2017, 69, 1–8. [Google Scholar]
- Forbes. Meet Kasita: The Micro-Housing Start-Up That’s About to Revolutionize Real Estate. 2016. Available online: https://www.forbes.com/sites/petertaylor/2016/07/19/meet-kasita-the-micro-housing-start-up-thats-about-to-revolutionize-real-estate/#51de14486f80 (accessed on 28 October 2019).
- Dezeen magazine. Kasita Unveils Prefabricated Tiny Houses That Slot Into ‘Racks’ Like Wine Bottles. 2016. Available online: https://www.dezeen.com/2016/08/12/kasita-prefabricated-tiny-micro-house-slots-into-racks-smart-home-technology/ (accessed on 29 October 2019).
- Soares, L.; Magalhães, F. A Year in the Metabolist Future of 1972. 2014. Available online: https://failedarchitecture.com/a-year-in-the-metabolist-future-of-1972/ (accessed on 2 October 2020).
- The Council of the European Union. Council Directive 96/53/EC laying down for certain road vehicles circulating within the Community the maximum authorized dimensions in national and international traffic and the maximum authorized weights in international traffic. Off. J. Eur. Communities 1996, 235, 59–75.
- Ministère de l’Energie. Journal Officiel du Grand-Duché de Luxembourg–A–N° 221–14 Décembre 2007–Règlement Grand-Ducal du 30 Novembre 2007 Concernant la Performance Énergétique des Bâtiments D’habitation. 2007. Available online: http://data.legilux.public.lu/file/eli-etat-leg-memorial-2007-221-fr-pdf.pdf (accessed on 14 July 2019).
- Ministère de l’Energie. “Journal Officiel du Grand-Duché de Luxembourg–A–N° 146–1er Aout 2016–Règlement Grand-Ducal du 23 Juillet 2016 Concernant la Performance Énergétique des Bâtiments D’habitation et Fonctionnels” 2016. Available online: http://data.legilux.public.lu/file/eli-etat-leg-memorial-2016-146-fr-pdf.pdf (accessed on 16 July 2019).
- German Institute for Standardization. Wärmeschutz und Energie-Einsparung in Gebäuden Teil_2: Mindestanforderungen an den Wärmeschutz; DIN 4108-2:2013-0239; German Institute for Standardization: Berlin, Germany, 2019. [Google Scholar]
- Aspen Aerogels. Technical Guidance Document. Spaceloft Aerogel Blanket Insulation; Aspen Aerogels Inc.: Northborough, MA, USA, 2011; p. 18. [Google Scholar]
- Steico. Datasheet STEICO Flex 038. Available online: https://www.steico.com/fileadmin/steico/content/pdf/Marketing/UK/Product_information/flex/STEICOflex_038_en_i.pdf (accessed on 13 June 2019).
- Chartered Institution of Building Services Engineers. CIBSE TM59:2017—Design Methodology for the Assessment of Overheating Risk in Homes; Chartered Institution of Building Services Engineers: London, UK, 2017. [Google Scholar]
- Ye, Y.; Xu, P.; Mao, J.; Ji, Y. Experimental study on the effectiveness of internal shading devices. Energy Build. 2016, 111, 154–163. [Google Scholar] [CrossRef]
- Wymelenberg, K.V.D. Patterns of occupant interaction with window blinds: A literature review. Energy Build. 2012, 51, 165–176. [Google Scholar] [CrossRef]
- Newsham, G.R. Manual Control of Window Blinds and Electric Lighting: Implications for Comfort and Energy Consumption. Indoor Built Environ. 1994, 3, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-S.; Koo, S.-H.; Seong, Y.-B.; Jo, J.-H. Evaluating Thermal and Lighting Energy Performance of Shading Devices on Kinetic Façades. Sustainability 2016, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- Wankanapon, P.; Mistrick, R.G. Roller Shades and Automatic Lighting Control with Solar Radiation Control Strategies. Built 2011, 1, 35–42. [Google Scholar]
- Transsolar. TRNFLOW Manual—A Module of an Air Flow Network for Coupled Simulation with TYPE 56 (Multi-Zone Building of TRNSYS); Transsolar: Stuttgart, Germany, 2009; Volume 56. [Google Scholar]
- American Society for Testing and Materials, ASTM International. ASTM Standard E779-87-Test Method for Determining Air Leakage Rate by Fan Pressurization; American Society for Testing and Materials, ASTM: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Sherman, M. A Power-Law Formulation of Laminar Flow in Short Pipes. J. Fluids Eng. 1992, 114, 601–605. [Google Scholar] [CrossRef]
- Orme, M.; Liddament, M.W.; Wilson, A. Numerical Data for Air Infiltration and Natural Ventilation Calculations; Air Infiltration and Ventilation Centre: Warwick, UK, 1998. [Google Scholar]
- German Institute for Standardization. Raumlufttechnische Anlagen in Arbeits-und Versammlungsräumen; DIN 1946-2:1994; German Institute for Standardization: Berlin, Germany, 1994. [Google Scholar]
Building Material | Heat Conductivity W/(m.K) | Heat Capacity Wh/(kg.K) | Density (kg/m3) |
---|---|---|---|
Chipboard * | 0.14 | 0.47 | 500 |
Aerogel a [40] | 0.02 | 0.28 | 150 |
Wood wool b [41] | 0.04 | 0.58 | 50 |
Wood fiberboard * | 0.09 | 0.69 | 650 |
Air blade c,* | 0.03 | 0.28 | 1.23 |
Hardwood * | 0.18 | 0.44 | 700 |
Softwood * | 0.14 | 0.61 | 450 |
Lightweight concrete d,* | 1.80 | 0.28 | 1400 |
Components | Module Variant | |
---|---|---|
Building Permit Application | AAA Energy Class | |
Glazing and frame: | ||
Uglazing | 1.10 W/(m2.K) | 0.55 W/(m2.K) |
g-value | 60% | 60% |
Uframe | 1.10 W/(m2.K) | 0.70 W/(m2.K) |
Non-operable window: | ||
Gross dimensions (width × height) | 0.90 m × 2.10 m | 0.90 m × 2.10 m |
Surface ratio glazing/window | 70% | 80% |
Uinstalled | 1.21 W/(m2.K) | 0.65 W/(m2.K) |
Window | ||
Gross dimensions (width × height) | 3.00 m × 2.70 m | 3.00 m × 2.70 m |
Opening | Tilt and turn window | Tilt and turn window |
Gross dimensions of the operable part (width × height) | 3.00 m × 1.20 m | 3.00 m × 1.20 m |
Surface ratio glazing/window | 75% | 80% |
Uinstalled | 1.20 W/(m2.K) | 0.64 W/(m2.K) |
Module Variants | n | V (m3) | ACH50 (h−1) | Q50 (m3/h) | C | Q1 (m3/h) | Q1 (kg/s) |
---|---|---|---|---|---|---|---|
AAA energy class | 0.65 | 72.9 | 0.6 | 43.74 | 3.43 | 3.43 | 11.4 × 10−4 |
Building permit application | 1 | 72.90 | 5.73 | 5.73 | 19.1 × 10−4 |
Cracks around the Element | Length (m) | Air Mass Flow Coefficient Cs (kg/s) | |
---|---|---|---|
“AAA Energy Class” Module | “Building Permit Application” Module | ||
Door | 6 (26%) | 2.9 × 10−4 | 4.9 × 10−4 |
Non-operable window | 6 (26%) | 2.9 × 10−4 | 4.9 × 10−4 |
Window | 11.4 (48%) | 5.6 × 10−4 | 9.3 × 10−4 |
Total | 23.4 (100%) | 11.4 × 10−4 | 19.1 × 10−4 |
Parameters | Values |
---|---|
Dual flow ventilation system | |
| |
| 0.35 [1/h] = 23.6 m3/h |
| 60 m3/h |
| 1.2 kg/m3 |
| 0.2 kg/s at 1 Pa |
| 0.65 a |
| 9.15 m |
| 3.10 m |
Thermal airnode | |
| 6.05 m |
| 2.70 m / 9.00 m |
External nodes | |
| 9.15 m |
| |
Length-to-width ratio: 2:1 | |
Shielded (worst-case based on DTS) | |
| 0°=−0.32; 45°=−0.3; 90°=0.15; 135°=0.18; 180°=0.15; 225°=−0.3; 270°=−0.32; 315°=−0.2 [51] |
| 0°=0.15; 45°=−0.3; 90°=−0.32; 135°=−0.2; 180°=−0.32; 225°=−0.3;270°=0.15; 315°=0.18 [51] |
Crack around the door/non-operable window | |
| 2.9 × 10−4 kg/s at 1 Pa (“AAA energy class” module) |
4.9 × 10−4 kg/s at 1 Pa (“Building permit application” module) | |
| 0.65 a |
| 6.05 m |
| 0 m |
| EN002 |
Crack around the window | |
| 5.6 × 10−4 kg/s at 1 Pa (“AAA energy class” module) |
9.3 × 10−4 kg/s at 1 Pa (“Building permit application” module) | |
| 0.65 a |
| 6.05 m |
| 0 m |
| EN001 |
Window opening | |
| 1 (window is in a vertical wall) |
| Bottom hinged sash window/door |
| 2.75 m / 1.05 m |
| 0.90 m |
| 0.6 |
| 0.6 |
| |
| 0 kg/s/m at 1 Pa as described in Section 4.3.5 |
| 0.65 a |
| maximum value of 0.25 |
| EN001 |
| 6.95 m |
| 0.90 m |
Wind velocity profile | |
| 0° |
| 0.25 (wood, small city, suburb) |
Module Variants and Sub-Variants | Low Occupancy | High Occupancy | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overheating Criteria | Max. Room Temp. [°C] | ACH * [h−1] | Overheating Criteria | Max. Room Temp. [°C] | ACH * [h−1] | |||||||||
>28 °C | >26 °C | >28 °C | >26 °C | |||||||||||
OP [hrs.] | OP [hrs.] | OP/EP [%] | ODH [°Ch] | Mean | Max | OP [hrs.] | OP [hrs.] | OP/EP [%] | ODH [°Ch] | Mean | Max | |||
“AAA energy class“ module | ||||||||||||||
S1: Without any external shading device | ||||||||||||||
| 2135 | 2148 | 98 | 22,667 | 52 | 0.68 | 0.96 | 2142 | 2151 | 98 | 23,745 | 52 | 0.88 | 0.96 |
| 810 | 1146 | 52 | 4732 | 44 | 1.87 | 5.20 | 954 | 1285 | 59 | 5987 | 46 | 2.12 | 5.25 |
| 496 | 816 | 37 | 2450 | 40 | 2.38 | 5.07 | 351 | 649 | 30 | 1716 | 38 | 3.41 | 4.70 |
S2: With a fixed external shading device | ||||||||||||||
| 1484 | 1927 | 88 | 7787 | 40 | 0.67 | 0.95 | 1781 | 2081 | 95 | 10,810 | 40 | 0.86 | 0.95 |
| 218 | 505 | 23 | 872 | 35 | 1.60 | 4.86 | 424 | 792 | 36 | 1817 | 37 | 1.89 | 4.85 |
| 113 | 284 | 13 | 422 | 33 | 1.98 | 4.47 | 162 | 337 | 15 | 608 | 34 | 2.87 | 4.53 |
S3: With a moveable external shading device | ||||||||||||||
| 678 | 1249 | 57 | 2487 | 33 | 0.66 | 0.95 | 1233 | 1723 | 79 | 5348 | 35 | 0.86 | 0.95 |
| 28 | 151 | 7 | 105 | 30 | 1.42 | 4.38 | 159 | 416 | 19 | 546 | 32 | 1.75 | 4.60 |
| 8 | 79 | 4 | 35 | 29 | 1.73 | 4.30 | 45 | 188 | 9 | 163 | 31 | 2.69 | 4.40 |
“Building permit application“ module | ||||||||||||||
S1: Without any external shading device | ||||||||||||||
| 1464 | 1788 | 82 | 9457 | 46 | 0.68 | 1.03 | 1611 | 1915 | 88 | 11,134 | 47 | 0.87 | 1.03 |
| 601 | 896 | 41 | 3115 | 42 | 1.68 | 4.99 | 737 | 1044 | 48 | 4103 | 44 | 1.93 | 5.05 |
| 378 | 649 | 30 | 1847 | 38 | 2.14 | 4.81 | 302 | 565 | 26 | 1477 | 37 | 3.08 | 4.40 |
S2: With a fixed external shading device | ||||||||||||||
| 504 | 858 | 39 | 2079 | 36 | 0.67 | 1.03 | 764 | 1232 | 56 | 3544 | 38 | 0.86 | 1.03 |
| 124 | 308 | 14 | 486 | 34 | 1.40 | 4.12 | 234 | 516 | 24 | 1011 | 36 | 1.69 | 4.52 |
| 77 | 213 | 10 | 290 | 32 | 1.71 | 4.31 | 131 | 267 | 12 | 478 | 33 | 2.50 | 4.50 |
S3: With a moveable external shading device | ||||||||||||||
| 95 | 422 | 19 | 376 | 31 | 0.67 | 1.02 | 378 | 732 | 33 | 1257 | 33 | 0.86 | 1.02 |
| 7 | 82 | 4 | 34 | 29 | 1.21 | 4.13 | 66 | 255 | 12 | 242 | 31 | 1.55 | 4.33 |
| 3 | 47 | 2 | 17 | 29 | 1.43 | 4.17 | 24 | 147 | 7 | 101 | 30 | 2.16 | 4.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakotonjanahary, M.; Scholzen, F.; Waldmann, D. Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg. Sustainability 2020, 12, 8474. https://doi.org/10.3390/su12208474
Rakotonjanahary M, Scholzen F, Waldmann D. Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg. Sustainability. 2020; 12(20):8474. https://doi.org/10.3390/su12208474
Chicago/Turabian StyleRakotonjanahary, Michaël, Frank Scholzen, and Daniele Waldmann. 2020. "Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg" Sustainability 12, no. 20: 8474. https://doi.org/10.3390/su12208474
APA StyleRakotonjanahary, M., Scholzen, F., & Waldmann, D. (2020). Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg. Sustainability, 12(20), 8474. https://doi.org/10.3390/su12208474