The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. The Historical State of the Dongsha Atoll (DA) Coral Community
2.2.1. Species Diversity of the Corals
2.2.2. Coral Communities Prior to 1998: Before the Severe Coral Bleaching Event
2.2.3. Coral Communities from 1998–2007: Prior to the Establishment of Dongsha Atoll Marine National Park (DAMNP)
2.2.4. Coral Communities from 2007–2012: The Protected Period
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name of Locations | Sector | Date | Longitude and Latitude | Depth | Reference | |
---|---|---|---|---|---|---|
06-1 | outer reef | 2006/7/21 | 20°35′10.00″ N | 116°47′50.40″ E | 10–15 m | Jeng 2006 [38] |
06-2 | outer reef | 2006/7/21 | 20°35′23.60″ N | 116°49′22.40″ E | 10–15 m | Jeng 2006 [38] |
06-3 | outer reef | 2006/7/22 | 20°46′51.20″ N | 116°48′28.10″ E | 11–14 m | Jeng 2006 [38] |
06-4 | outer reef | 2006/7/22 | 20°46′48.30″ N | 116°51′40.60″ E | 10–12 m | Jeng 2006 [38] |
06-5 | outer reef | 2006/7/23 | 20°42′58.40″ N | 116°42′14.30″ E | 12–16 m | Jeng 2006 [38] |
06-6 | inner reef | 2006/7/23 | 20°42′09.70″ N | 116°52′02.40″ E | 13–14 m | Jeng 2006 [38] |
06-7 | inner reef | 2006/8/26 | 20°42′12.40″ N | 116°48′17.20″ E | 5–11 m | Jeng 2006 [38] |
06-8 | inner reef | 2006/8/26 | 20°39′56.90″ N | 116°47′57.50″ E | 14–15 m | Jeng 2006 [38] |
06-9 | outer reef | 2006/8/27 | 20°40′29.80″ N | 116°55′25.80″ E | 10–12 m | Jeng 2006 [38] |
06-10 | outer reef | 2006/8/27 | 20°44′31.60″ N | 116°54′46.30″ E | 12–18 m | Jeng 2006 [38] |
06-11 | inner reef | 2006/8/29 | 20°41′54.70″ N | 116°46′51.10″ E | 17–23 m | Jeng 2006 [38] |
06-12 | inner reef | 2006/8/30 | 20°41′42.50″ N | 116°44′46.60″ E | 4–6 m | Jeng 2006 [38] |
06-13 | inner reef | 2006/9/25 | 20°43′10.50″ N | 116°44′13.30″ E | 4–5 m | Jeng 2006 [38] |
06-14 | inner reef | 2006/9/27 | 20°40′00.80″ N | 116°46′01.10″ E | 6–8 m | Jeng 2006 [38] |
06-A | inner reef | 2006/8/28 | 20°42′48.20″ N | 116°42′20.50″ E | 3–6 m | Jeng 2006 [38] |
06-B | inner reef | 2006/8/29 | 20°43′10.50″ N | 116°44′12.70″ E | 4–6 m | Jeng 2006 [38] |
12-01 | inner reef | 2012.04.27 | 20°41′47.73″ N | 116°44′49.32″ E | 6–11 m | Dai 2012 [34] |
12-04 | inner reef | 2012.04.30 | 20°39′29.26″ N | 116°45′33.84″ E | 9 m | Dai 2012 [34] |
12-05 | inner reef | 2012.05.01 | 20°41′46.07″ N | 116°47′05.24″ E | 6–12 m | Dai 2012 [34] |
12-08 | outer reef | 2012.06.08 | 20°46′47.47″ N | 116°48′25.28″ E | 7–10 m | Dai 2012 [34] |
12-11 | inner reef | 2012.07.15 | 20°41′13.20″ N | 116°49′55.61″ E | 7–13 m | Dai 2012 [34] |
12-12 | inner reef | 2012.07.16 | 20°43′16.31″ N | 116°44′09.24″ E | 4–5 m | Dai 2012 [34] |
12-16 | inner reef | 2012.09.07 | 20°44′32.69″ N | 116°51′54.38″ E | 7–10 m | Dai 2012 [34] |
12-17 | inner reef | 2012.09.09 | 20°38′30.36″ N | 116°49′30.90″ E | 8–12 m | Dai 2012 [34] |
12-20 | inner reef | 2012.09.10 | 20°42′20.35″ N | 116°42′04.82″ E | 5–6 m | Dai 2012 [34] |
12-23 | outer reef | 2012.09.12 | 20°38′24.95″ N | 116°42′00.65″ E | 14–16 m | Dai 2012 [34] |
12-01 | inner reef | 2019/8/31 | 20°41′47.72″ N | 116°44′49.31″ E | 7–8.5 m | This study |
12-04 | inner reef | 2019/4/23 | 20°39′29.24″ N | 116°45′33.84″ E | 8–10 m | This study |
12-05 | inner reef | 2019/4/17 | 20°41′46.06″ N | 116°47′05.23″ E | 7–11 m | This study |
12-08 | outer reef | 2019/4/19 | 20°46′47.46″ N | 116°48′25.27″ E | 9–11 m | This study |
12-11 | inner reef | 2019/4/17 | 20°41′13.19″ N | 116°49′55.60″ E | 12–14 m | This study |
12-12 | inner reef | 2019/8/31 | 20°43′16.30″ N | 116°44′09.24″ E | 4–5 m | This study |
12-16 | inner reef | 2019/8/30 | 20°44′32.68″ N | 116°51′54.37″ E | 5–7 m | This study |
12-17 | inner reef | 2019/8/30 | 20°38′30.36″ N | 116°49′30.89″ E | 6.5–8.5 m | This study |
12-20 | inner reef | 2019/4/23 | 20°42′20.34″ N | 116°42′04.81″ E | 5–6 m | This study |
12-23 | outer reef | 2019/4/21 | 20°38′24.94″ N | 116°42′00.64″ E | 13–15 m | This study |
19-01 | outer reef | 2019/4/19 | 20°46′42.00″ N | 116°53′08.22″ E | 9–10 m | This study |
19-02 | outer reef | 2019/4/22 | 20°38′55.97″ N | 116°54′51.29″ E | 9.7–10.5 m | This study |
19-03 | outer reef | 2019/4/21 | 20°35′26.28″ N | 116°49′36.54″ E | 9–11 m | This study |
19-05 | inner reef | 2019/8/30 | 20°43′34.43″ N | 116°51′39.17″ E | 6–8 m | This study |
Appendix B
Number | Date | Name | Maximum Wind (knots) | Average Speed | Min Pressure (hPa) |
---|---|---|---|---|---|
1 | 2005/09 | DAMREY | 80 | 14.7 (km/h)|351 (km/d) | 955 |
2 | 2008/08 | NURI | 75 | 20.7 (km/h)|495 (km/d) | 955 |
3 | 2008/09 | HAGUPIT | 90 | 23.6 (km/h)|565 (km/d) | 935 |
4 | 2010/08 | LIONROCK | 50 | 9.9 (km/h)|238 (km/d) | 985 |
5 | 2012/06 | TALIM | 50 | 15.8 (km/h)|378 (km/d) | 985 |
6 | 2012/08 | TEMBIN | 80 | 14.7 (km/h)|353 (km/d) | 950 |
7 | 2016/10 | AERE | 60 | 10.2 (km/h)|245 (km/d) | 975 |
8 | 2016/10 | HAIMA | 115 | 23.7 (km/h)|569 (km/d) | 900 |
9 | 2018/09 | MANGKHUT | 110 | 28.0 (km/h)|671 (km/d) | 905 |
10 | 2018/09 | BARIJAT | 40 | 18.0 (km/h)|431 (km/d) | 998 |
11 | 2018/11 | YUTU | 115 | 17.8 (km/h)|427 (km/d) | 900 |
References
- Wilkinson, C. Status of Coral Reefs of the World: 2008; Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre: Townsville, Australia, 2008. [Google Scholar]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 2058–2162. [Google Scholar] [CrossRef] [Green Version]
- Bellwood, D.R.; Hughes, T.P.; Folke, C.; Nyström, M. Confronting the coral reef crisis. Nature 2004, 429, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C. Status of Coral Reefs of the World: 2004; Australian Institute of Marine Science: Townsville, Australia, 2004. [Google Scholar]
- Knowlton, N.; Jackson, J.B.C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 2008, 6, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 301, 955–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emslie, M.; Logan, M.; Williamson, D.; Ayling, A.M.; MacNeil, M.A.; Ceccarelli, D.; Cheal, A.J.; Evans, R.D.; Johns, K.A.; Jonker, M.J.; et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 2015, 25, 983–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellin, C.; MacNeil, M.A.; Cheal, A.J.; Emslie, M.J.; Caley, M.J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 2016, 19, 629–637. [Google Scholar] [CrossRef]
- Bohnsack, J.A. Marine reserves: They enhance fisheries, reduce conflicts and protect resources. Oceanus 1993, 36, 63–71. [Google Scholar]
- Halpern, B.S.; Warner, R.R. Marine reserves have rapid and lasting effects. Ecol. Lett. 2002, 5, 361–366. [Google Scholar] [CrossRef]
- Halpern, B.S. The impact of marine reserves: Do reserves work and does reserve size matter? Ecol. Appl. 2003, 13, 117–137. [Google Scholar] [CrossRef]
- Claudet, J.; Osenberg, C.W.; Benedetti-Cecchi, L.; Domenici, P.; García-Charton, J.A.; Pérez-Ruzafa, Á.; Badalamenti, F.; Bayle-Sempere, J.; Brito, A.; Bulleri, F.; et al. Marine reserves: Size and age do matter. Ecol. Lett. 2008, 11, 481–489. [Google Scholar] [CrossRef]
- Graham, N.A.J.; Bellwood, D.R.; Cinner, J.E.; Hughes, T.P.; Norstrom, A.V.; Nystrom, M. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 2013, 11, 541–548. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Donner, S.D.; Maynard, J.A.; MacNeil, M.A.; Graham, N.A.J.; Maina, J.; Baker, A.C.; Alemu, J.B.; Beger, M.; Campbell, S.J.; et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 2012, 7, e42884. [Google Scholar] [CrossRef] [PubMed]
- Micheli, F.; Saenz-Arroyo, A.; Greenley, A.; Vazquez, L.; Espinoza Montes, J.A.; Rossetto, M.; De Leo, G.A. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 2012, 7, e40832. [Google Scholar] [CrossRef] [Green Version]
- Mora, C.; Sale, P. Ongoing global biodiversity loss and the need to move beyond protected areas: A review of the technical and practical shortcoming of protected areas on land and sea. Mar. Ecol. Prog. Ser. 2011, 434, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Selig, E.R.; Bruno, J.F. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 2010, 5, e9278. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.F. Dong-sha Atoll in the South China Sea, present and future. In Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 28 June–2 July 2004. [Google Scholar]
- Chou, Y. Dongsha Atoll Research Station—A steady research platform in South China Sea. Kuroshio Sci. 2016, 10, 23–27. [Google Scholar]
- Dai, C.F.; Fan, T.Y.; Wu, C.S. Coral fauna of Tungsha Tao (Pratas Island). Acta Oceanogr. Taiwan 1995, 34, 1–16. [Google Scholar]
- Fang, L.S. The status of marine ecology in Dongsha Atoll. In Proceedings of the European-Asian Workshop on Investigation and Management of Mediterranean and South China Sea Coastal Zone, Hong Kong, China, 9–11 November 1998. [Google Scholar]
- Li, J.J.; Fang, L.S. The management of Dongsha Atoll as an effective marine protected area. In Proceedings of the 4th Conference on the Protected Areas of East Asia (IUCN/WCPA/EA-4), Taipei, Taiwan, 18–23 March 2002. [Google Scholar]
- Soong, K.; Dai, C.F.; Lee, C.P. Status of Pratas Atoll in South China Sea. In Proceedings of the 4th Conference on the Protected Areas of East Asia (IUCN/WCPA/EA-4), Taipei, Taiwan, 18–23 March 2002. [Google Scholar]
- Li, J.J.; Lee, T.F.; Tew, K.S.; Fang, L.S. Changes in the coral community at Dongsha Atoll, South China Sea from 1975 to 1998. Acta Zool. Taiwan 2000, 11, 1–15. [Google Scholar] [CrossRef]
- Morton, B.; Blackmore, G. South China Sea. Mar. Pollut. Bull. 2001, 42, 1236–1263. [Google Scholar] [CrossRef]
- Morton, B. Dongsha Atoll, South China Sea: Ground Zero! Mar. Pollut. Bull. 2002, 44, 835–837. [Google Scholar] [CrossRef]
- Nieder, C.; Liao, C.P.; Chen, C.A.; Liu, S.L. Filamentous calcareous alga provides substrate for coral-competitive macroalgae in the degraded lagoon of Dongsha Atoll, Taiwan. PLoS ONE 2019, 14, e0200864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, J.D.; Kise, H.; Wee, H.B.; Lee, C.L.; Soong, K. Crown-of-thorns starfish outbreak at oceanic Dongsha Atoll in the northern South China Sea. Mar. Biodivers. 2019, 49, 2495–2497. [Google Scholar] [CrossRef]
- Cheng, Y.R.; Dai, C.F. Poecilostomatoid copepods associated with two widely distributed corals, Galaxea astreata (Lamarck, 1816) and Galaxea fascicularis (Linnaeus 1767), from South China Sea. Mar. Biodivers. 2018, 48, 1057–1072. [Google Scholar] [CrossRef]
- Fang, L.S.; Shao, K.T.; Liu, L.; Li, J.J. A Survey of the Marine Ecological Resources of Dong-Sha Atoll; Fishery Management Department: Kaohsiung, Taiwan, 1990. (In Chinese) [Google Scholar]
- Keshavmurthy, S.; Meng, P.J.; Wang, J.T.; Kuo, C.Y.; Yang, S.Y.; Hsu, C.M.; Gan, C.H.; Dai, C.F.; Chen, C.A. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2014, 2, e327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.F.; Qin, X.Y.; Zheng, A.Y. Coral Fauna of Dongsha Atoll in the South China Sea; Marine National Park Headquarters: Kaohsuing, Taiwan, 2013. (In Chinese) [Google Scholar]
- Dai, C.F. Natural Resources and Management Strategy Analysis of Dongsha Atoll Natural Park; Marine National Park Headquarters: Kaohsiung, Taiwan, 2012. (In Chinese) [Google Scholar]
- Gomez, E.D.; Alcala, A.C.; San Diego, A.C. Status of Philippine coral reefs. In Proceedings of the 4th International Coral Reef Symposium, Manila, Philippines, 18–22 May 1981. [Google Scholar]
- Connell, J.H.; Hughes, T.P.; Wallace, C.C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 1997, 67, 461–488. [Google Scholar] [CrossRef]
- Jeng, M.S. The Foundation Survey of Ecological Resources of Dongsha Atoll; Marine National Park Headquarters: Kaohsiung, Taiwan, 2005. (In Chinese) [Google Scholar]
- Jeng, M.S. The Investigation and Monitor of Ecological Resources of Dongsha Atoll (1); Marine National Park Headquarters: Kaohsiung, Taiwan, 2006. (In Chinese) [Google Scholar]
- Jeng, M.S. The Investigation and Monitor of Ecological Resources of Dongsha Atoll (2); Marine National Park Headquarters: Kaohsiung, Taiwan, 2008. (In Chinese) [Google Scholar]
- Jeng, M.S. The Assessment of Ecological Status and Change Trends of Coral Reefs at Dongsha Atoll; Marine National Park Headquarters: Kaohsiung, Taiwan, 2011. (In Chinese) [Google Scholar]
- Dai, C.F. The Study of Critical Factors for Coral Growth at Dongsha Atoll; Marine National Park Headquarters: Kaohsiung, Taiwan, 2013. (In Chinese) [Google Scholar]
- Dai, C.F. The Investigation of Soft Corals of Dongsha Atoll Natural Park; Marine National Park Headquarters: Kaohsiung, Taiwan, 2017. (In Chinese) [Google Scholar]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; Primer-E: Plymouth, UK, 2001. [Google Scholar]
- Wang, Y.H.; Dai, C.F.; Chen, Y.Y. The physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Lett. 2007, 34, L18609. [Google Scholar] [CrossRef]
- Cheng, Y.R. Natural Marine Resources Analysis of Dongsha Atoll Natural Park; Marine National Park Headquarters: Kaohsiung, Taiwan, 2019. (In Chinese) [Google Scholar]
- Done, T.J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 1992, 247, 121–132. [Google Scholar] [CrossRef]
- Edinger, E.N.; Risk, M.J. Reef classification by coral morphology predicts coral reef conservation value. Biol. Conserv. 2000, 92, 1–13. [Google Scholar] [CrossRef]
- Goh, A.H.; Sasekumar, A. The community structure of the fringing coral reef, Cape Rachado. Malay. Nat. J. 1980, 34, 25–27. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.S. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 1990, 62, 185–202. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of Australia and the Indo-Pacific; Angus and Robertson: Sydney, Australia, 1986. [Google Scholar]
- Grime, J.P. Plant Strategies and Vegetation Process; John Wiley and Sons: Chichester, UK, 1979. [Google Scholar]
- Pastorak, R.A.; Bilyard, G.R. Effects of sewage pollution on coral reef communities. Mar. Ecol. Prog. Ser. 1985, 21, 175–189. [Google Scholar] [CrossRef]
- Berkelmans, R.; De’ath, G.; Kininmonth, S.; Skirving, W.J. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation patterns, and predictions. Coral Reefs 2004, 23, 74–83. [Google Scholar] [CrossRef]
- Endean, R.; Cameron, A.M. Acanthaster planci population outbreaks. In Ecosystems of the World: Coral Reefs; Dubinsky, S., Ed.; Elsevier Science: New York, NY, USA, 1990. [Google Scholar]
- Lane, D.J.W. Acanthaster planci impact on coral communities at permanent transect sites on Bruneian reefs, with a regional overview and a critique on outbreak causes. J. Mar. Biol. Assoc. UK 2012, 92, 803–809. [Google Scholar] [CrossRef]
- Baird, A.H.; Marshall, P.A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Biol. Annu. Rev. 2002, 237, 133–141. [Google Scholar] [CrossRef]
- Cheng, Y.R.; Anderson, B.M.; Meng, P.J.; Dai, C.F.; Huys, R. Copepods associated with scleractinian corals: A worldwide checklist and a case study of their impact on the reef-building coral Pocillopora damicornis (Linnaeus, 1758) (Pocilloporidae). Zootaxa 2016, 4174, 291–345. [Google Scholar] [CrossRef]
- Douglas, A.E. Coral bleaching-how and why? Mar. Pollut. Bull. 2003, 46, 385–392. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, S.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [Green Version]
- Adjeroud, M.; Michonneau, F.; Edmunds, P.J.; Chancerelle, Y.; Lison de Loma, T.; Penin, L.; Thibaut, L.; Vidal-Dupiol, J.; Salvat, B.; Galzin, R. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 2009, 28, 775–780. [Google Scholar] [CrossRef]
- Fabricius, K.E.; De’ath, G.; Puotinen, M.L.; Done, T.; Cooper, T.F.; Burgess, S.C. Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnol. Oceanogr. 2008, 53, 690–704. [Google Scholar] [CrossRef]
- Gouezo, M.; Golbuu, Y.; van Woesik, R.; Rehm, L.; Koshiba, S.; Doropoulos, C. Impact of two sequential super typhoons on coral reef communities in Palau. Mar. Ecol. Prog. Ser. 2015, 540, 73–85. [Google Scholar] [CrossRef]
- Guillemot, N.; Chabanet, P.; Le Pape, O. Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 2010, 29, 445–453. [Google Scholar] [CrossRef]
- Harmelin-Vivien, M.L. The effects of storms and cyclones on coral reefs: A review. J. Coast. Res. 1994, 12, 211–231. [Google Scholar]
- Madin, J.S.; Connolly, S.R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 2006, 444, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Van Woesik, R.; Ayling, A.M.; Mapstone, B. Impact of Tropical Cyclone ‘Ivor’ on the Great Barrier Reef, Australia. J. Coast. Res. 1991, 7, 551–557. [Google Scholar]
- Cheal, A.; Coleman, G.; Delean, S.; Miller, I.; Osborne, K.; Sweatman, H. Responses of coral and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs 2002, 21, 131–142. [Google Scholar] [CrossRef]
- Lassig, B.R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 1983, 9, 55–63. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Munday, P.L.; Wilson, S.K.; Graham, N.A.J.; Cinner, J.E.; Bellwood, D.R.; Jones, G.P.; Polunin, N.V.C.; Mcclanaha, T.R. Effects of climate-induced coral bleaching on coral reef fishes–ecological and economics consequences. Oceanogr. Mar. Biol. Annu. Rev. 2008, 46, 251–296. [Google Scholar]
- Wilson, S.K.; Graham, N.A.; Pratchett, M.S.; Jones, G.P.; Polunin, N.V. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient? Glob. Chang. Biol. 2006, 12, 2220–2234. [Google Scholar] [CrossRef]
- Russ, G.R.; Questel, S.L.A.; Rizzari, J.R.; Alcala, A.C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 2015, 162, 2029–2045. [Google Scholar] [CrossRef]
- Wakeford, M.; Done, T.J.; Johnson, C.R. Decadal trends in a coral community and evidence of changed disturbance regime. Coral Reefs 2008, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Yuen, Y.S.; Meng, P.J.; Ho, P.H.; Wang, J.T.; Liu, P.J.; Chang, Y.C.; Dai, C.F.; Fan, T.Y.; Lin, H.J.; et al. Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE 2012, 7, e44364. [Google Scholar] [CrossRef] [PubMed]
- Doropoulos, C.; Roff, G.; Zupan, M.; Nestor, V.; Isechal, A.L.; Mumby, P.J. Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs 2014, 33, 613–623. [Google Scholar] [CrossRef]
- Hughes, T.P. Catastrophes, phase shifts, and largescale degradation of a Caribbean coral reef. Science 1994, 265, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Roff, G.; Chollett, I.; Doropoulos, C.; Golbuu, Y.; Steneck, R.S.; Isechal, A.L.; van Woesik, R.; Mumby, P.J. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 2015, 34, 715–725. [Google Scholar] [CrossRef]
- Russ, G.R.; McCook, L.J. Potential effects of a cyclone on benthic algal production and yield to grazers on coral reefs across the central Great Barrier Reef. J. Exp. Mar. Biol. Ecol. 1999, 235, 237–254. [Google Scholar] [CrossRef]
- Lukoschek, V.; Cross, P.; Torda, G.; Zimmerman, R.; Willis, B.L. The importance of coral larval recruitment for the recovery of reefs impacted by Cyclone Yasi in the central Great Barrier Reef. PLoS ONE 2013, 8, e65363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkachenko, K.S.; Soong, K. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Mar. Environ. Res. 2017, 127, 112–125. [Google Scholar] [CrossRef]
- Mumby, P.J.; Harborne, A.R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 2010, 5, e8657. [Google Scholar] [CrossRef]
- Steneck, R.S.; Mumby, P.J.; MacDonald, C.; Rasher, D.B.; Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 2018, 4, eaao5493. [Google Scholar] [CrossRef] [Green Version]
- Box, S.J.; Mumby, P.J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 2007, 342, 139–149. [Google Scholar] [CrossRef]
2006 | 2012 | 2019 | |||
---|---|---|---|---|---|
Coral Family | Species Name | Growth Form | Average ± SE | Average ± SE | Average ± SE |
Acroporidae | Montipora grisea | encrusting | 5.43 ± 1.53 | 2.00 ± 0.00 | 5.60 ± 3.11 |
Montipora informis | encrusting | 10.43 ± 1.56 | 8.00 ± 3.00 | 9.20 ± 2.94 | |
Agariciidae | Pavona varians | encrusting | 4.57 ± 0.43 | 2.00 ± 0.00 | 14.20 ± 0.80 |
Euphylliidae | Galaxea fascicularis | other | 7.57 ± 1.21 | 2.00 ± 0.00 | 6.80 ± 1.80 |
Fungiidae | Herpolitha limax | other | 2.00 | 0.00 | 0.00 |
Leptastrea transversa | massive | 3.00 ± 0.63 | 3.50 ± 1.50 | 7.40 ± 1.47 | |
Meruliniidae | Cyphastrea serailia | massive | 3.00 ± 0.63 | 3.50 ± 1.50 | 4.00 ± 1.92 |
Dipsastraea pallida | massive | 5.00 ± 0.00 | 3.50 ± 1.50 | 9.80 ± 1.20 | |
Dipsastraea speciosa | massive | 7.57 ± 1.21 | 8.00 ± 3.00 | 6.20 ± 1.20 | |
Echinopora gemmacea | foliaceous | 2.86 ± 0.55 | 2.00 | 4.80 ± 2.56 | |
Echinopora lamellosa | foliaceous | 4.14 ± 1.26 | 5.00 | 3.80 ± 0.73 | |
Favites abdita | massive | 9.29 ± 1.11 | 8.00 ± 3.00 | 11.80 ± 0.80 | |
Favites halicora | massive | 5.00 | 6.50 ± 4.50 | 9.80 ± 1.20 | |
Goniastrea edwardsi | massive | 2.86 ± 0.55 | 8.00 ± 3.00 | 3.20 ± 0.73 | |
Goniastrea retiformis | massive | 2.43 ± 0.43 | 5.00 ± 0.00 | 10.60 ± 1.60 | |
Pocilloporidae | Pocillopora verrucosa | branching | 12.00 ± 1.81 | 3.50 ± 1.50 | 8.00 ± 1.90 |
Poritidae | Porites cylindrica | branching | 6.00 ± 2.65 | 0.00 | 0.00 |
Porites lichen | foliaceous | 7.14 ± 1.42 | 8.00 ± 3.00 | 6.20 ± 1.20 | |
Porites lobata | massive | 3.29 ± 0.61 | 8.00 ± 3.00 | 7.40 ± 1.47 | |
Porites lutea | massive | 3.71 ± 0.61 | 3.50 ± 1.50 | 5.60 ± 1.47 | |
Five Major Functional Groups of Corals | |||||
branching | 103.44 ± 24.87 | 58.70 ± 7.52 | 59.07 ± 7.52 | ||
encrusting | 24.38 ± 4.53 | 33.50 ± 2.20 | 35.21 ± 6.50 | ||
foliaceous | 68.81 ± 11.45 | 83.90 ± 14.28 | 51.14 ± 8.28 | ||
massive | 161.00 ± 18.74 | 243.20 ± 23.46 | 203.29 ± 16.49 | ||
other | 32.69 ± 9.96 | 49.10 ± 14.82 | 40.43 ± 11.49 |
Locations (Year) | N | S | H’ | E |
---|---|---|---|---|
06-1 (2006) | 702 | 161 | 6.98 | 0.95 |
06-2 (2006) | 687 | 164 | 7.00 | 0.95 |
06-3 (2006) | 686 | 176 | 7.17 | 0.96 |
06-4 (2006) | 704 | 188 | 7.26 | 0.96 |
06-5 (2006) | 648 | 159 | 7.07 | 0.97 |
06-6 (2006) | 663 | 152 | 6.96 | 0.96 |
06-7 (2006) | 342 | 81 | 5.92 | 0.93 |
06-8 (2006) | 209 | 55 | 5.49 | 0.95 |
06-9 (2006) | 757 | 176 | 7.16 | 0.96 |
06-10 (2006) | 828 | 186 | 7.19 | 0.95 |
06-11 (2006) | 221 | 56 | 5.50 | 0.95 |
06-12 (2006) | 378 | 73 | 5.88 | 0.95 |
06-13 (2006) | 133 | 38 | 4.95 | 0.94 |
06-14 (2006) | 192 | 51 | 5.44 | 0.96 |
06-A (2006) | 162 | 81 | 6.34 | 1.00 |
06-B (2006) | 88 | 44 | 5.46 | 1.00 |
Average ± SE | 463 ± 67 | 115 ± 15 | 6.36 ± 0.20 | 0.96 ± 0.00 |
12-01 (2012) | 625 | 138 | 6.72 | 0.94 |
12-04 (2012) | 374 | 124 | 6.71 | 0.96 |
12-05 (2012) | 814 | 161 | 7.04 | 0.96 |
12-08 (2012) | 584 | 156 | 6.98 | 0.96 |
12-11 (2012) | 280 | 104 | 6.49 | 0.97 |
12-12 (2012) | 368 | 116 | 6.61 | 0.96 |
12-16 (2012) | 512 | 154 | 6.94 | 0.95 |
12-17 (2012) | 638 | 173 | 7.15 | 0.96 |
12-20 (2012) | 487 | 138 | 6.85 | 0.96 |
12-23 (2012) | 399 | 127 | 6.71 | 0.96 |
Average | 508 ± 51 | 139 ± 7 | 6.82 ± 0.07 | 0.96 ± 0.00 |
12-1 (2019) | 223 | 60 | 5.55 | 0.94 |
12-4 (2019) | 609 | 102 | 6.34 | 0.95 |
12-5 (2019) | 521 | 75 | 5.89 | 0.95 |
12-8 (2019) | 574 | 103 | 6.32 | 0.95 |
12-11 (2019) | 182 | 28 | 4.38 | 0.91 |
12-12 (2019) | 251 | 57 | 5.51 | 0.94 |
12-16 (2019) | 415 | 68 | 5.72 | 0.94 |
12-17 (2019) | 524 | 100 | 6.28 | 0.95 |
12-20 (2019) | 485 | 93 | 6.20 | 0.95 |
12-23 (2019) | 520 | 100 | 6.30 | 0.95 |
19-01 (2019) | 683 | 114 | 6.51 | 0.95 |
19-02 (2019) | 462 | 89 | 6.13 | 0.95 |
19-03 (2019) | 536 | 101 | 6.32 | 0.95 |
19-05 (2019) | 351 | 68 | 5.75 | 0.94 |
Average | 453 ± 40 | 83 ± 6 | 5.94 ± 0.15 | 0.94 ± 0.00 |
Average Abundance | Contribution (%) | Cum. Contribution (%) | |
---|---|---|---|
2006 average similarity: 54.11 | |||
Porites lobata | 2.13 | 2.27 | 2.27 |
Porites lutea | 2.06 | 2.16 | 4.43 |
Goniastrea retiformis | 1.91 | 2.04 | 6.47 |
Goniopora djiboutiensis | 1.96 | 1.80 | 8.27 |
Montipora informis | 2.09 | 1.66 | 9.93 |
2012 average similarity: 61.97 | |||
Porites lobata | 3.21 | 1.95 | 1.95 |
Porites lutea | 2.86 | 1.81 | 3.77 |
Favites abdita | 2.48 | 1.36 | 5.12 |
Favites russelli | 2.29 | 1.32 | 6.44 |
Astreopora ocellata | 2.21 | 1.31 | 7.75 |
Turbinaria mesenterina | 2.23 | 1.25 | 9.00 |
2019 average similarity: 50.11 | |||
Porites lobata | 3.24 | 4.03 | 4.03 |
Porites lutea | 3.15 | 4.01 | 8.04 |
Average Abundance (2006) | Average Abundance (2012) | Contribution (%) | Cum. Contribution (%) | |
average dissimilarity: 55.38 | ||||
Favites russelli | 0.63 | 2.29 | 0.96 | 0.96 |
Psammocora contigua | 0.40 | 1.87 | 0.93 | 1.89 |
Astreopora ocellata | 0.76 | 2.21 | 0.89 | 2.78 |
Turbinaria irregularis | 0.00 | 1.82 | 0.89 | 3.67 |
Porites nigrescens | 0.44 | 1.78 | 0.84 | 4.50 |
Pectinia paeonia | 0.42 | 1.78 | 0.81 | 5.31 |
Hydnophora exesa | 1.03 | 1.74 | 0.78 | 6.09 |
Favites halicora | 0.66 | 2.31 | 0.77 | 6.86 |
Montipora spongodes | 0.00 | 1.60 | 0.74 | 7.60 |
Echinopora lamellosa | 1.99 | 2.33 | 0.73 | 8.33 |
Echinopora gemmacea | 1.77 | 1.47 | 0.71 | 9.04 |
Goniopora columna | 0.77 | 1.53 | 0.69 | 9.73 |
Average Abundance (2012) | Average Abundance (2019) | Contribute (%) | Cum. Contribute (%) | |
average dissimilarity: 55.92 | ||||
Psammocora contigua | 1.87 | 0.36 | 0.83 | 0.83 |
Astreopora ocellata | 2.21 | 0.40 | 0.83 | 1.66 |
Gardineroseris planulata | 1.68 | 0.00 | 0.76 | 2.42 |
Favites russelli | 2.29 | 0.77 | 0.75 | 3.17 |
Favites flexuosa | 1.85 | 0.10 | 0.74 | 3.91 |
Herpolitha limax | 1.53 | 1.50 | 0.72 | 4.63 |
Pectinia paeonia | 1.78 | 0.51 | 0.71 | 5.34 |
Symphyllia agaricia | 1.68 | 0.20 | 0.69 | 6.04 |
Pavona decussata | 1.46 | 0.91 | 0.67 | 6.71 |
Lithophyllon undulatum | 1.07 | 1.45 | 0.67 | 7.38 |
Pavona venosa | 1.66 | 0.50 | 0.67 | 8.05 |
Echinopora gemmacea | 1.47 | 1.51 | 0.67 | 8.72 |
Coeloseris mayeri | 1.44 | 0.16 | 0.67 | 9.39 |
Average Abundance (2006) | Average Abundance (2019) | Contribute (%) | Cum. Contribute (%) | |
average dissimilarity: 59.02 | ||||
Porites nigrescens | 0.44 | 1.55 | 1.08 | 1.08 |
Leptastrea transversa | 1.04 | 2.52 | 1.00 | 2.08 |
Goniopora djiboutiensis | 1.96 | 0.20 | 0.95 | 3.03 |
Acropora microphthalma | 0.89 | 1.13 | 0.93 | 3.97 |
Favites halicora | 0.66 | 2.20 | 0.87 | 4.83 |
Herpolitha limax | 1.16 | 1.50 | 0.84 | 5.67 |
Fungia concinna | 0.49 | 1.45 | 0.83 | 6.51 |
Pavona decussata | 1.30 | 0.91 | 0.81 | 7.31 |
Montipora grisea | 1.31 | 1.95 | 0.80 | 8.11 |
Lithophyllon undulatum | 1.26 | 1.45 | 0.79 | 8.90 |
Leptastrea pruinosa | 1.08 | 2.19 | 0.78 | 9.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-R.; Chin, C.-H.; Lin, D.-F.; Wang, C.-K. The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances. Sustainability 2020, 12, 9052. https://doi.org/10.3390/su12219052
Cheng Y-R, Chin C-H, Lin D-F, Wang C-K. The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances. Sustainability. 2020; 12(21):9052. https://doi.org/10.3390/su12219052
Chicago/Turabian StyleCheng, Yu-Rong, Chi-Hsiang Chin, Ding-Fa Lin, and Chao-Kang Wang. 2020. "The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances" Sustainability 12, no. 21: 9052. https://doi.org/10.3390/su12219052
APA StyleCheng, Y. -R., Chin, C. -H., Lin, D. -F., & Wang, C. -K. (2020). The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances. Sustainability, 12(21), 9052. https://doi.org/10.3390/su12219052