Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analytical Methods
3. Results
3.1. Overview of Research
3.1.1. Overview of Papers Published
3.1.2. Authors: Core Articles and Citations
3.1.3. Distribution of Research Disciplines
3.1.4. Countries and Organization
3.2. Main Themes
3.2.1. Keywords Analysis
3.2.2. Clusters Analysis
#0 Cluster Agroecology
#1 Enhance Ecosystem Services and Agrobiodiversity
#2 Diversified Farm Systems
#3 Agrobiodiversity Conservations
#4 Dietary Diversity
3.3. Trending Topics in the Past and Current Literature
4. Discussion
- First the system and then the techniques;
- strong reduction of external inputs;
- prevention (e.g., soil health, crop adversity);
- diversification and agroecosystem services;
- transdisciplinary and participatory innovation.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Gao, Y.; Hua, Y.; Zhang, Y.; Liu, K. Assessing and mapping recreationists’ perceived social values for ecosystem services in the Qinling Mountains, China. Ecosyst. Serv. 2017, 3, 7. [Google Scholar] [CrossRef]
- Mastrangelo, M.E.; Aguiar, S. Are Ecological Modernization Narratives Useful for Understanding and Steering Social-Ecological Change in the Argentine Chaco? Sustainability 2019, 11, 3593. [Google Scholar] [CrossRef] [Green Version]
- Horlings, L.G.; Marsden, T.K. Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could “feed the world”. Glob. Environ. Chang. 2011, 21, 441–452. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O. Livestock system sustainability and resilience in intensive production zones: Which form of ecological modernization? Reg. Environ. Chang. 2015, 15, 1651–1665. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Fares, M. Designing agroecological transitions; A review. Agron. Sustain. Dev. 2015, 35, 1237–1257. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, T. The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 2006, 66, 133–154. [Google Scholar] [CrossRef]
- CiteSpace: Visualizing Patterns and Trends in Scientific Literature. Available online: http://cluster.cis.drexel.edu/~cchen/citespace/ (accessed on 24 September 2020).
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, H.; Wang, Z.; Zhang, B.; Meyer, B.C. Knowledge mapping analysis of rural landscape using CiteSpace. Sustainability 2020, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Yao, L.; Hui, L.; Yang, Z.; Chen, X.; Xiao, A. Freshwater microplastics pollution: Detecting and visualizing emerging trends based on Citespace II. Chemosphere 2020, 245, 125627. [Google Scholar] [CrossRef]
- Brandes, U.; Delling, D.; Gaertler, M.; Görke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. On modularity clustering. IEEE Trans. Knowl. Data Eng. 2008, 20, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Kleinberg, J. Bursty and Hierarchical Structure in Streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecology: A brief account of its origins and currents of thought in Latin America. Agroecol. Sustain. Food Syst. 2017, 41, 231–237. [Google Scholar] [CrossRef]
- Morel, K.; Revoyron, E.; San Cristobal, M.; Baret, P.V. Innovating within or outside dominant food systems? Different challenges for contrasting crop diversification strategies in Europe. PLoS ONE 2020, 15, e0229910. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The agroecological revolution in Latin America: Rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Rosset, P.M.; Sosa, B.M.; Jaime, A.M.R.; Lozano, D.R.Á. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: Social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 2011, 38, 161–191. [Google Scholar] [CrossRef]
- Tessier, L.; Bijttebier, J.; Marchand, F.; Baret, P.V. Pathways of action followed by Flemish beef farmers–an integrative view on agroecology as a practice. Agroecol. Sustain. Food Syst. 2020. [Google Scholar] [CrossRef]
- Gliessman, S. Agroecology: Growing the roots of resistance. Agroecol. Sustain. Food Syst. 2013, 37, 19–31. [Google Scholar] [CrossRef]
- Mier y Terán Giménez Cacho, M.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar] [CrossRef]
- Schiller, K.J.F.; Klerkx, L.; Poortvliet, P.M.; Godek, W. Exploring barriers to the agroecological transition in Nicaragua: A Technological Innovation Systems Approach. Agroecol. Sustain. Food Syst. 2020, 44, 88–132. [Google Scholar] [CrossRef] [Green Version]
- López-García, D.; García-García, V.; Sampedro-Ortega, Y.; Pomar-León, A.; Tendero-Acin, G.; Sastre-Morató, A.; Correro-Humanes, A. Exploring the contradictions of scaling: Action plans for agroecological transition in metropolitan environments. Agroecol. Sustain. Food Syst. 2020, 44, 467–489. [Google Scholar] [CrossRef]
- Levidow, L.; Sansolo, D.; Schiavinatto, M. Agroecological practices as territorial development: An analytical schema from Brazilian case studies. J. Peasant Stud. 2019. [Google Scholar] [CrossRef]
- Cuéllar-Padilla, M.; Calle-Collado, Á. Can we find solutions with people? Participatory action research with small organic producers in Andalusia. J. Rural Stud. 2011, 27, 372–383. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D.; et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.-Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.A.; Karp, D.S.; DeClerck, F.; Kremen, C.; Naeem, S.; Palm, C.A. Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends Ecol. Evol. 2015, 30, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, E.M.; Kennedy, C.M.; Kremen, C.; Batáry, P.; Berendse, F.; Bommarco, R.; Bosque-Pérez, N.A.; Carvalheiro, L.G.; Snyder, W.E.; Williams, N.M.; et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 2017, 23, 4946–4957. [Google Scholar] [CrossRef] [Green Version]
- Saunders, M.E.; Peisley, R.K.; Rader, R.; Luck, G.W. Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems. Ambio 2016, 45, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Bellon, M.R.; Kotu, B.H.; Azzarri, C.; Caracciolo, F. To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Dev. 2020, 125, 104682. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Magne, M.A. Agricultural diversity to increase adaptive capacity and reduce vulnerability of livestock systems against weather variability—A farm-scale simulation study. Agric. Ecosyst. Environ. 2015, 199, 301–311. [Google Scholar] [CrossRef]
- Iles, A.; Marsh, R. Nurturing Diversified Farming Systems in Industrialized Countries: How Public Policy Can Contribute. Ecol. Soc. 2012, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Bacon, C.M.; Getz, C.; Kraus, S.; Montenegro, M.; Holland, K. The Social Dimensions of Sustainability and Change in Diversified Farming Systems. Ecol. Soc. 2012, 17, 41. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Quétier, F.; Cáceres, D.M.; Trainor, S.F.; Pérez-Harguindeguy, N.; Bret-Harte, M.S.; Finegan, B.; Peña-Claros, M.; Poorter, L. Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc. Natl. Acad. Sci. USA 2011, 108, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Van Zonneveld, M.; Turmel, M.S.; Hellin, J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Front. Sustain. Food Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Narloch, U.; Drucker, A.G.; Pascual, U. Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecol. Econ. 2011, 70, 1837–1845. [Google Scholar] [CrossRef]
- Isakson, S.R. No hay ganancia en la milpa: The agrarian question, food sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands. J. Peasant Stud. 2009, 36, 725–759. [Google Scholar] [CrossRef] [Green Version]
- Keleman, A.; Hellin, J.; Bellon, M.R. Maize diversity, rural development policy, and farmers’ practices: Lessons from Chiapas, Mexico. Geogr. J. 2009, 175, 52–70. [Google Scholar] [CrossRef]
- Zimmerer, K.S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 2013, 110, 2769–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, R.B. Lost and Found Crops: Agrobiodiversity, Indigenous Knowledge, and a Feminist Political Ecology of Sorghum and Finger Millet in Northern Malawi. Ann. Assoc. Am. Geogr. 2014, 104, 577–593. [Google Scholar] [CrossRef]
- Krishna, V.V.; Drucker, A.G.; Pascual, U.; Raghu, P.T.; King, E.D.I.O. Estimating compensation payments for on-farm conservation of agricultural biodiversity in developing countries. Ecol. Econ. 2013, 87, 110–123. [Google Scholar] [CrossRef]
- Narloch, U.; Pascual, U.; Drucker, A.G. Cost-effectiveness targeting under multiple conservation goals and equity considerations in the Andes. Environ. Conserv. 2011, 38, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Zimmerer, K.S. Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: The dynamic uses of cultural landscape knowledge. Ecol. Soc. 2014, 19, 1. [Google Scholar] [CrossRef] [Green Version]
- Stromberg, P.M.; Pascual, U.; Bellon, M.R. Seed systems and farmers’ seed choices: The case of maize in the Peruvian Amazon. Hum. Ecol. 2010, 38, 539–553. [Google Scholar] [CrossRef]
- Krishna, V. Farm Production Diversity and Dietary Diversity in Developing Countries. Open Access J. 2015, 112, 10657–10662. [Google Scholar] [CrossRef] [Green Version]
- Ng’Endo, M.; Keding, G.B.; Bhagwat, S.; Kehlenbeck, K. Variability of on-farm food plant diversity and its contribution to food security: A case study of smallholder farming households in western Kenya. Agroecol. Sustain. Food Syst. 2015, 39, 1071–1103. [Google Scholar] [CrossRef]
- Segnon, A.C.; Achigan-Dako, E.G. Comparative analysis of diversity and utilization of edible plants in arid and semi-arid areas in Benin. J. Ethnobiol. Ethnomed. 2014, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Powell, B.; Thilsted, S.H.; Ickowitz, A.; Termote, C.; Sunderland, T.; Herforth, A. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 2015, 7, 535–554. [Google Scholar] [CrossRef] [Green Version]
- Nordhagen, S.; Pascual, U.; Drucker, A.G. Feeding the Household, Growing the Business, or Just Showing Off? Farmers’ Motivations for Crop Diversity Choices in Papua New Guinea. Ecol. Econ. 2017, 137, 99–109. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Migliorini, P.; Gkisakis, V.; Gonzalvez, V.; Raigón, M.D.; Bàrberi, P. Agroecology in mediterranean Europe: Genesis, state and perspectives. Sustainability 2018, 10, 2724. [Google Scholar] [CrossRef] [Green Version]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 2016, 222, 138–147. [Google Scholar] [CrossRef]
Cluster ID | Size | Silhouette | Mean (year) | Core Noun Terms |
---|---|---|---|---|
#0 | 200 | 0.683 | 2013 | agroecology transition; food sovereignty; agroecological practice; agroecological paradigm; Latin America; sustainability transition |
#1 | 157 | 0.729 | 2013 | natural vegetation; biological control; organic farming; agricultural intensification; habitat amount |
#2 | 117 | 0.745 | 2008 | carbon sequestration; soil quality; conventional farming system; diversified farming practice; water-holding capacity |
#3 | 108 | 0.823 | 2006 | cultural landscape; conservation area; on-farm conservation; conservation service; policy option |
#4 | 104 | 0.752 | 2013 | crop diversity; food group; semi-arid area; land use; livestock diversity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchi, L.; Boggia, A.; Paolotti, L. Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach. Sustainability 2020, 12, 9635. https://doi.org/10.3390/su12229635
Rocchi L, Boggia A, Paolotti L. Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach. Sustainability. 2020; 12(22):9635. https://doi.org/10.3390/su12229635
Chicago/Turabian StyleRocchi, Lucia, Antonio Boggia, and Luisa Paolotti. 2020. "Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach" Sustainability 12, no. 22: 9635. https://doi.org/10.3390/su12229635
APA StyleRocchi, L., Boggia, A., & Paolotti, L. (2020). Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach. Sustainability, 12(22), 9635. https://doi.org/10.3390/su12229635