Towards Sustainable Organic Farming Systems
Abstract
:1. Introduction
2. Phosphorus Use
3. Calcium Use
4. Conceptual Framework
Funding
Acknowledgments
Conflicts of Interest
References
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249. [Google Scholar] [CrossRef] [PubMed]
- Leifeld, J. How sustainable is organic farming? Agr. Ecosyst. Environ. 2012, 150, 121–122. [Google Scholar] [CrossRef]
- Qiao, Y.; Halberg, N.; Vaheesan, S.; Scott, S. Assessing the social and economic benefits of organic and fair trade tea production for small-scale farmers in Asia: A comparative case study of China and Sri Lanka. Renew. Agr. Food Syst. 2016, 31, 246–257. [Google Scholar] [CrossRef]
- Padel, S.; Nicholas, P.; Jasinska, A.; Lampkin, N. Ethical concerns associated with organic food in Europe. In Proceedings of the 16th IFOAM Organic World Congress (OWC), Modena, Italy, 16–20 June 2008. [Google Scholar]
- Eyhorn, F.; Muller, A.; Reganold, J.P.; Frison, E.; Herren, H.R.; Mueller, A.; Sanders, J.; El-Hage Scialabba, N.; Seufert, V.; Smith, P.; et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019, 2, 253–255. [Google Scholar] [CrossRef] [Green Version]
- El Chami, D.; Daccache, A.; El Moujabber, M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef] [Green Version]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, R.W.; Ulrich, A.E.; Eilittä, M.; Roy, A. Sustainable use of Phosphorus: A finite resource. Sci. Total Environ. 2013, 461–462, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.J.; Cordell, D.; Smit, A.L.; Rosemarin, A. Sustainable Use of Phosphorus: EU Tender Env.B.1./ETU/2009/0025. Plant Research International. 2010. Available online: https://library.wur.nl/WebQuery/wurpubs/reports/404463 (accessed on 20 November 2020).
- Ditta, A.; Muhammad, J.; Imtiaz, M.; Mehmood, S.; Qian, Z.; Tu, S. Application of rock phosphate enriched composts increases nodulation, growth and yield of chickpea. Int. J. Recycl. Org. Waste Agricult. 2018, 7, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Lukiwati, D.R. Effect of rock phosphate and superphosphate fertiliser on the productivity of maise var. Bisma. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities; Developments in Plant and Soil Sciences, vol 95; Adu-Gyamfi, J.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 183–187. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Rueber, D. Evaluation of Superphosphate and Rock Phosphate for a Corn-Oat-Forage Rotation. In Northern Research and Demonstration Farm, Annual Progress Reports, ISRF97-22; Iowa State University: Ames, IA, USA, 1997; pp. 6–8. [Google Scholar]
- Choudhary, M.; Peck, T.R.; Paul, L.E.; Bailey, L.D. Long-term comparison of rock phosphate with superphosphate on crop yield in two cereal-legume rotations. Can. J. Plant Sci. 1994, 74, 303–310. [Google Scholar] [CrossRef]
- Giovannini, C.; Garcia-Mina, J.M.; Ciavatta, C.; Marzadori, C. Effect of organic-complexed superphosphates on microbial biomass and microbial activity of soil. Biol. Fertil Soils 2013, 49, 395–401. [Google Scholar] [CrossRef]
- Erro, J.; Urrutia, O.; Baigorri, R.; Aparicio-Tejo, P.; Irigoyen, I.; Torino, F.; Mandado, M.; Yvin, J.C.; Garcia-Mina, J.M. Organic complexed superphosphates (CSP): Physicochemical characterisation and agronomical properties. J. Agric. Food Chem. 2012, 60, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Pilbeam, D.J.; Morley, P.S. Chapter 5–Calcium. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Cleveland, OH, USA, 2007; pp. 121–144. [Google Scholar]
- FAO. Food Wastage Footprint, Impacts on Natural Resources–Summary Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; 61p. [Google Scholar]
- Taylor, M.D.; Locascio, S.J. Blossom-End Rot: A Calcium Deficiency. J. Plant Nutr. 2004, 27, 123–139. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Karp, K.; Starast, M. Effects of springtime foliar fertilisation on strawberry yield in Estonia. Acta Hortic. 2002, 594, 501–505. [Google Scholar] [CrossRef]
- Herath, H.M.I.; Bandara, D.C.; Abeysinghe Banda, D.M.G. Effect of pre-harvest calcium fertiliser application on the control of internal browning development during the cold storage of pineapple ‘Mauritius’ (Ananas comosus (L.) Merr.). J. Hort. Sci. Biotech. 2003, 78, 762–767. [Google Scholar] [CrossRef]
- Zoz, T.T.; Steiner, F.; Seidel, E.P.; Castagnara, D.D.; de Souza, G.E. Foliar application of calcium and boron improves the spike fertility and yield of wheat. Biosci. J. 2016, 32, 873–880. [Google Scholar] [CrossRef]
- EC. Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. In Commission Regulation (EC) No 889/2008; EC: Brussels, Belgium, 2008. [Google Scholar]
- El Chami, D.; Daccache, A. Assessing sustainability of winter wheat production under climate change scenarios in a humid climate–An integrated modelling framework. Agr. Syst. 2015, 140, 19–25. [Google Scholar] [CrossRef]
- Jørgensen, A.; Le Bocq, A.; Nazarkina, L.; Hauschild, M. Methodologies for social life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 96–102. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef] [Green Version]
- Gasparatos, A.; Romeu-Dalmau, C.; von Maltitz, G.P.; Johnson, F.X.; Shackleton, C.; Jarzebski, M.P.; Jumbe, C.; Ochieng, C.; Mudombi, S.; Nyambane, A.; et al. Mechanisms and indicators for assessing the impact of biofuel feedstock production on ecosystem services. Biomass Bioenerg. 2018, 114, 157–173. [Google Scholar] [CrossRef]
- Hails, R.S.; Chaplin-Kramer, R.; Bennett, E.; Robinson, B.; Daily, G.; Brauman, K.; West, P. Determining the value of ecosystem services in agriculture. In Agricultural Resilience: Perspectives from Ecology and Economics; Gardner, S., Ramsden, S., Hails, R.S., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 60–89. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Chami, D. Towards Sustainable Organic Farming Systems. Sustainability 2020, 12, 9832. https://doi.org/10.3390/su12239832
El Chami D. Towards Sustainable Organic Farming Systems. Sustainability. 2020; 12(23):9832. https://doi.org/10.3390/su12239832
Chicago/Turabian StyleEl Chami, Daniel. 2020. "Towards Sustainable Organic Farming Systems" Sustainability 12, no. 23: 9832. https://doi.org/10.3390/su12239832
APA StyleEl Chami, D. (2020). Towards Sustainable Organic Farming Systems. Sustainability, 12(23), 9832. https://doi.org/10.3390/su12239832