CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin
Abstract
:1. Introduction
2. Scientific Quality of the Project
2.1. Relevance of the Proposal
2.2. Aim, Objectives, and Hypotheses
- (1)
- Intercropping benefits, as previously evidenced [5], are expected to be very efficient in our reference agroecosystems since they are characterized by low availabilities of mineral N, P, and Fe, which is partly due to the calcareous nature of Mediterranean soils.
- (2)
- Legumes have the ability to enhance P availability through rhizosphere acidification, exudation of organic acids, and excretion of enzymes (e.g., phytases). They can also provide access to more P through mycorrhizal symbiosis [31]. We hypothesize that, in intercropping conditions, these mechanisms not only benefit the legume and result in more efficient symbiotic nitrogen fixation, but also benefit the P nutrition of the cereal through facilitation.
- (3)
- We also hypothesize that the well-known improved N nutrition of cereals intercropped with legumes (by niche complementarity and eventually by N transfer through mycorrhizal networks [23]) will be enhanced by the above-cited mechanisms of P acquisition and transfer.
- (4)
- Cereal can adapt to Fe deficiency through exudation of siderophores, which increase Fe availability for the plant [18]. We hypothesize that legumes intercropped with cereals will benefit from the presence of these siderophores.
- (5)
- Available evidence indicates that rhizobia can behave as bona fide plant-growth-promoting bacteria (PGPB) upon interaction with nonlegume species [32] including durum wheat (unpublished data from our consortium). Since legumes increase the abundance of rhizobia, we hypothesize that the intermingling of legume roots with cereal roots will promote the elongation of the cereal root hairs and thereby increase the root system capacity to take up nutrients.
3. Quality and Effectiveness of the Scientific Project and Associated Work Plan
3.1. Methodology
3.2. Innovative Approach
4. Expected Impacts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, F.T.; Ver, L.M.; Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 2002, 190, 13–32. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Latati, M.; Bargaz, A.; Belarbi, B.; Lazali, M.; Benlahrech, S.; Tellah, S.; Kaci, G.; Drevon, J.J.; Ounane, S.M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur. J. Agron. 2016, 72, 80–90. [Google Scholar] [CrossRef]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and over yielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sun, Z.; Feng, L.; Bai, W.; Yang, N.; Zhang, Z.; Guijuan, D.; Chen, F.; Qian, C.; Qi, W.; et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crop. Res. 2020, 257, 1–10. [Google Scholar] [CrossRef]
- Connoly, J.; Goma, H.C.; Rabhim, K. The information content of indicators in intercropping research. Agr. Ecosyst. Environ. 2001, 97, 191–207. [Google Scholar] [CrossRef]
- Li, L.; Li, S.M.; Sun, J.H.; Zhou, L.L.; Bao, X.G.; Zhang, H.G.; Zhang, F.S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Bedoussac, L.; Carlsson, C.; Journet, E.P.; Justes, E.; Hauggaard-Nielsen, H. Enhancing yields in organic crop production by eco-functional intensification. Sustain. Agric. Res. 2015, 4, 42–50. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Tang, L.; Zheng, Y.; Makowski, D.; Yu, Y.; Zhang, F.; van der Werf, W. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; A meta-analysis. Eur. J. Plant Pathol. 2019, 154, 931–942. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Facilitative root interactions in intercrops. Plant Soil 2005, 274, 237–250. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, J.; Li, L.; Liu, X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 2004, 260, 89–99. [Google Scholar] [CrossRef]
- Xue, Y.; Xia, H.; Christie, P.; Zhang, Z.; Li, L.; Tang, C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. 2016, 117, 363–377. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, C.; Yu, Y.; Shen, J.; van der Werf, W.; Zhang, F. Intercropping legumes and cereals increases phosphorus use efficiency; A meta-analysis. Plant Soil 2020, 1–16. [Google Scholar]
- Cu, S.T.T.; Hutson, J.; Schuller, K.A. Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 2005, 272, 143–151. [Google Scholar] [CrossRef]
- Lazali, M.; Bargaz, A. Examples of belowground mechanisms enabling legumes to mitigate phosphorus deficiency. In Legume Nitrogen Fixation in Soils with Low Phosphorus Availability; Sulieman, S., Tran, L.S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 135–152. [Google Scholar]
- Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B. Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Betencourt, E.; Duputel, M.; Colomb, B.; Desclaux, D.; Hinsinger, P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Biochem. 2012, 46, 181–190. [Google Scholar] [CrossRef]
- Li, S.M.; Li, L.; Zhang, F.S.; Tang, C. Acid phosphatase role in chickpea/maize intercropping. Ann. Bot. 2004, 94, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Gunes, A.; Bagci, E.G.; Inal, A. Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. J. Plant Nutr. 2007, 30, 1455–1469. [Google Scholar] [CrossRef]
- Lazali, M.; Drevon, J.J. Role of acid phosphatase in the tolerance of the rhizobial symbiosis with legumes to phosphorus deficiency. Symbiosis 2018, 76, 221–228. [Google Scholar] [CrossRef]
- Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Wissuwa, M.; Mazzola, M.; Picard, C. Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 2009, 321, 409–430. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Irshad, U.; Brauman, A.; Villenave, C.; Plassard, C. Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster. Plant Soil 2012, 358, 155–168. [Google Scholar] [CrossRef]
- Poitout, A.; Martinière, A.; Kucharczyk, B.; Queruel, N.; Silva-Andia, J.; Mashkoor, S.; Gamet, L.; Varoquaux, F.; Paris, N.; Sentenac, H.; et al. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. J. Exp. Bot. 2017, 68, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, S.; Ben Amar, S.; Masmoudi, K.; Sentenac, H.; Brini, F.; Véry, A.A. Characterization of two HKT1; 4 transporters from Triticum monococcum to elucidate the determinants of the wheat salt tolerance Nax1 QTL. Plant Cell Physiol. 2016, 57, 2047–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazali, M.; Boudsocq, S.; Taschen, E.; Farissi, M.; Hamdi, W.; Ralli, P.; Sentenac, H. CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin. Sustainability 2021, 13, 4695. https://doi.org/10.3390/su13094695
Lazali M, Boudsocq S, Taschen E, Farissi M, Hamdi W, Ralli P, Sentenac H. CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin. Sustainability. 2021; 13(9):4695. https://doi.org/10.3390/su13094695
Chicago/Turabian StyleLazali, Mohamed, Simon Boudsocq, Elisa Taschen, Mohamed Farissi, Wissem Hamdi, Parthenopi Ralli, and Hervé Sentenac. 2021. "CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin" Sustainability 13, no. 9: 4695. https://doi.org/10.3390/su13094695
APA StyleLazali, M., Boudsocq, S., Taschen, E., Farissi, M., Hamdi, W., Ralli, P., & Sentenac, H. (2021). CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin. Sustainability, 13(9), 4695. https://doi.org/10.3390/su13094695