Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador
Abstract
:1. Introduction
2. Evaluation Methodologies
- (i)
- Expected Annual Damage (EAD) = TD/Pr(e)
- (ii)
- Certainty Equivalent Annual Damage (CEAD) = EAD × Risk Premium Multipliers
- (iii)
- Equity Weights Expected Annual Damage (EWEAD) = EAD × Equity weights
- (iv)
- Equity Weights Certainty Equivalent Annual Damage (EWCEAD) = EAD × Equity weights × Risk Premium Multipliers.
3. Data
3.1. The Research Context
3.2. Return Period, Stage-Damage Function and Flood Inundation Map
4. Empirical Equity Weights and Risk Premium Multipliers
5. Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- OECD. Financial Management of Flood Risk; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- CRED—Centre for Research on the Epidemiology of Disasters. Disaster Year in Review 2019; CRED: Brussels, Belgium, 2020; Available online: https://www.cred.be/publications (accessed on 2 September 2020).
- Pereira, P.; Barcelò, D.; Panagos, P. Soil and water threats in a changing environment. Environ. Res. 2020, 186, 109501. [Google Scholar] [CrossRef]
- Keating, A.; Campbell, K.; Mechler, R.; Michel-Kerjan, E.; Mochizuki, J.; Kunreuther, H.; Bayer, J.; Hanger, S.; McCallum, I.; See, L.; et al. Operationalizing Resilience against Natural Disaster Risk: Opportunities, Barriers, and a Way forward; Zurich Flood Resilience Alliance; IIASA: Zurich, Switzerland, 2014. [Google Scholar]
- World Resource Institute. Aqueduct Water Risk Atlas (Aqueduct 3.0); WRI: Washington, DC, USA, 2019; Available online: https://wriorg.s3.amazonaws.com/s3fs-public/uploads/aqueduct-whats-new.pdf (accessed on 18 November 2020).
- McClymont, K.; Morrison, D.; Beevers, L.; Esther, C. Flood Resilience: A Systematic Review. J. Environ. Plan. Manag. 2020, 63, 1151–1176. [Google Scholar] [CrossRef] [Green Version]
- Hennighausen, H.; Suter, J.F. Flood Risk Perception in the Housing Market and the Impact of a Major Flood Event. Land Econ. 2020, 96, 366–383. [Google Scholar] [CrossRef]
- Shatkin, G. Futures of Crisis, Futures of Urban Political Theory: Flooding in Asian Coastal Megacities. Int. J. Urban Reg. Res. 2019, 43, 207–226. [Google Scholar] [CrossRef]
- Goh, K. Urban Waterscapes: The Hydro-Politics of Flooding in a Sinking City. Int. J. Urban Reg. Res. 2019, 43, 250–272. [Google Scholar] [CrossRef]
- Chen, J.J.; Mueller, V.; Jia, Y.; Tseng, S.K.-H. Validating Migration Responses to Flooding Using Satellite and Vital Registration Data. Am. Econ. Rev. 2017, 107, 441–445. [Google Scholar] [CrossRef]
- Oosterhaven, J.; Tobben, J. Wider Economic Impacts of Heavy Flooding in Germany: A Non-linear Programming Approach. Spat. Econ. Anal. 2017, 12, 404–428. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, S.; Mahanta, R. Vulnerability Aspects of Urban Flooding: A Review. Indian J. Econ. Dev. 2018, 14, 578–586. [Google Scholar] [CrossRef]
- Ogie, R.I.; Adam, C.; Perez, P. A Review of Structural Approach to Flood Management in Coastal Megacities of Developing Nations: Current Research and Future Directions. J. Environ. Plan. Manag. 2000, 63, 127–147. [Google Scholar] [CrossRef]
- Cobian Alvarez, J.A.; Resosudarmo, B.P. The Cost of Floods in Developing Countries’ Megacities: A Hedonic Price Analysis of the Jakarta Housing Market, Indonesia. Environ. Econ. Policy Stud. 2019, 21, 555–577. [Google Scholar] [CrossRef] [Green Version]
- Reynaud, A.; Nguyen, M.-H.; Aubert, C. Is There a Demand for Flood Insurance in Vietnam? Results from a Choice Experiment. Environ. Econ. Policy Stud. 2018, 20, 593–617. [Google Scholar] [CrossRef]
- De Silva, M.M.G.T.; Kawasaki, A. Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community. Ecol. Econ. 2018, 152, 131–140. [Google Scholar] [CrossRef]
- Erman, A.E.; Tariverdi, M.; Obolensky, M.A.B.; Chen, X.; Vincent, R.C.; Malgioglio, S.; Maruyama Rentschler, J.E.; Hallegatte, S.; Yoshida, N. Wading Out the Storm: The Role of Poverty in Exposure, Vulnerability and Resilience to Floods in Dar Es Salaam; Policy Research Working Paper Series 8976; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Kurosaki, T. Vulnerability of Household Consumption to Floods and Droughts in Developing Countries: Evidence from Pakistan. Environ. Dev. Econ. 2015, 20, 209–235. [Google Scholar] [CrossRef] [Green Version]
- Rasch, R. Income Inequality and Urban Vulnerability to Flood Hazard in Brazil. Soc. Sci. Q. 2017, 98, 299–325. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Oreggia, E.; De La Fuente, A.; De La Torre, R.; Moreno, H.A. Natural Disasters, Human Development and Poverty at the Municipal Level in Mexico. J. Dev. Stud. 2013, 49, 442–455. [Google Scholar] [CrossRef]
- Glave, M.; Fort, R.; Rosemberg, C. Disaster Risk and Poverty in Latin America: The Peruvian Case Study; Group for the Analysis of Development (GRADE): Lima, Peru, 2009. [Google Scholar]
- Lopez-Calva, L.F.; Ortiz-Juarez, E. Evidence and Policy Lessons on the Links between Disaster Risk and Poverty in Latin America; MDG-01-2009; UNDP Regional Bureau for Latin America and the Caribbean: New York, NY, USA, 2009. [Google Scholar]
- Carter, M.R.; Little, P.D.; Mogues, T.; Negatu, W. Poverty traps and natural disasters in Ethiopia and Honduras. World Dev. 2007, 35, 835–856. [Google Scholar] [CrossRef]
- Brouwer, R.; Akter, S.; Brander, L.; Haque, E. Socioeconomic vulnerability and adaptation to environmental risk: A case study of climate change and flooding in Bangladesh. Risk Anal. 2007, 27, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Masozera, M.; Bailey, M.; Kerchner, C. Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecol. Econ. 2007, 63, 299–306. [Google Scholar] [CrossRef]
- Tahira, Y.; Kawasaki, A. The impact of the Thai flood of 2011 on the rural poor population living on the flood plain. J. Disaster Res. 2017, 12, 147–157. [Google Scholar] [CrossRef]
- Borgomeo, E.; Hall, J.W.; Salehin, M. Avoiding the water-poverty trap: Insights from a conceptual human-water dynamical model for coastal Bangladesh. Int. J. Water Resour. 2017, 34, 1–23. [Google Scholar] [CrossRef]
- Henry, M.; Kawasaki, A.; Takigawa, I.; Meguro, K. The impact of income disparity on vulnerability and information collection: An analysis of the 2011 Thai flood. Flood Risk Manag. 2015, 10, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, U.; Narayanan, K. Vulnerability and Coping to Disasters: A Study of Household Behaviour in Flood Prone Region of India. Munich Pers. RePEc Arch. 2010, 21992, 1–22. [Google Scholar]
- Hallegatte, S.; Henriet, F.; Patwardhan, A.; Narayanan, K.; Ghosh, S.; Karmakar, S.; Patnaik, U.; Abhayankar, A.; Pohit, S.; Corfee-Morlot, J. Flood Risks, Climate Change Impacts and Adaptation Benefits in Mumbai: An Initial Assessment of Socio-Economic Consequences of Present and Climate Change Induced Flood Risks and of Possible Adaptation Options; OECD Publishing Office: Paris, France, 2010. [Google Scholar]
- OECD. Cost-Benefit Analysis and the Environment: Further Developments and Policy Use; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Guide to Cost-Benefit Analysis of Investment Projects; European Commission: Brussels, Belgium, 2015; Available online: https://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/cba_guide.pdf (accessed on 15 February 2020).
- U.S. Environmental Protection Agency, National Center for Environmental Economics. Guidelines for Preparing Economic Analyses; EPA 240-R-00-003; U.S. Environmental Protection Agency, National Center for Environmental Economics: Washington, DC, USA, 2000. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1004DN9.PDF?Dockey=P1004DN9.PDF (accessed on 18 November 2020).
- European Commission. Floods and Economics: Appraising, Prioritising and Financing Flood Risk Management Measures and Instruments; Working Group F on Floods, Thematic Workshop 25-26/10/2010; European Commission: Ghent, Belgium, 2011; Available online: https://ec.europa.eu/environment/water/water-framework/economics/pdf/WGF11-3-BE-Floods_and_economics_workshop.pdf (accessed on 15 February 2020).
- European Commission. Directorate General Humanitarian Aid and Civil Protection (DG-ECHO). Integrating CBA in the Development of Standards for Flood Protection & Safety (FLOOD-CBA2); Final Report; European Commission: Ghent, Belgium, 2017; Available online: http://www.floodcba2.eu/site/ (accessed on 18 November 2020).
- Meade, J.E. Trade and Welfare: Mathematical Supplement; Oxford University Press: Oxford, UK, 1955. [Google Scholar]
- Drupp, M.A.; Meyac, J.N.; Baumgärtner, S.; Quaas, M.F. Economic Inequality and the Value of Nature. Ecol. Econ. 2018, 150, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Adler, M.D. Benefit–Cost Analysis and Distributional Weights: An Overview. Rev. Environ. Econ. Policy 2016, 10, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Kind, J.; Botzen, W.J.W.; Aerts, J.C.J.H. Accounting for risk aversion, income distribution and social welfare in cost-benefit analysis for flood risk management. WIREs Clim. Chang. 2017, 8, e446. [Google Scholar] [CrossRef]
- Skovgård, O.A.; Zhou, Q.; Linde, J.J.; Arnbjerg-Nielsen, K. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments. Water 2015, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Dupuits, E.J.C.; Diermanse, F.L.M.; Kok, M. Economically optimal safety targets for interdependent flood defences in a graph-based approach with an efficient evaluation of expected annual damage estimates. Nat. Hazards Earth Syst. Sci. 2017, 17, 1893–1906. [Google Scholar] [CrossRef]
- Alian, N.; Ahmadi, M.M.; Bakhtiari, B. Uncertainty Analysis of Expected Annual Flood Damage for Flood Risk Assessment (A Case Study: Zayande Roud Basin). J. Water Soil Sci. 2019, 23, 141–152. [Google Scholar]
- Schulze, W.D.; Kneese, A.V. Risk in Benefit-Cost Analysis. Risk Anal. 1981, 1, 81–88. [Google Scholar] [CrossRef]
- Arrow, K.J. The Theory of Risk Aversion. Aspects of the Theory of Risk Bearing; Yrjo Jahnssonin Saatio: Helsinki, Finland, 1965; Reprinted in: Essays in the Theory of Risk Bearing; Markham: Chicago, IL, USA, 1971; pp. 90–109. [Google Scholar]
- Layard, R.; Mayraz, G.; Nickell, S. The marginal utility of income. J. Public Econ. 2008, 92, 1846–1857. [Google Scholar] [CrossRef] [Green Version]
- Fleurbaey, M.; Abi-Rafeh, R. The use of distributional weights in benefit–cost analysis: Insights from welfare economics. Rev. Environ. Econ. Policy 2016, 10, 286–307. [Google Scholar] [CrossRef]
- Anthoff, D.; Hepburn, C.; Tol, R.S. Equity weighting and the marginal damage costs of climate change. Ecol. Econ. 2009, 68, 836–849. [Google Scholar]
- Her Majesty’s Treasury (HMT). The Green Book. Appraisal and Evaluation in Central Government; TSO: London, UK, 2011. [Google Scholar]
- OECD. Cost-Benefit Analysis and the Environment: Recent Developments; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef] [Green Version]
- Tauzer, E.; Borbor-Cordova, M.J.; Mendoza, J.; De La Cuadra, T.; Cunalata, J.; Stewart-Ibarra, A.M. A participatory community case study of periurban coastal flood vulnerability in southern Ecuador. PLoS ONE 2019, 14, e0224171. [Google Scholar] [CrossRef]
- Moser, C. Ordinary Families, Extraordinary Lives: Assets of Poverty Reduction in Guayaquil, 1978–2004; Brookings Institution Press: Washington, DC, USA, 2009. [Google Scholar]
- INEC. Encuesta Naciònal de Ingresos y Gastos de los Hogares Urbanos y Rurales; Instituto Nacional de Estadística y Censos, Gobierno de la Republica del Ecuador: Quito, Ecuador, 2011. Available online: https://www.ecuadorencifras.gob.ec/encuesta-nacional-de-ingresos-y-gastos-de-los-hogares-urbanos-y-rurales/ (accessed on 15 February 2020).
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative Coastal Risk 719 Index (CCRI): A multidisciplinary risk index for Latin America and the 720 Caribbean. PLoS ONE 2017, 12, e0187011. [Google Scholar] [CrossRef] [Green Version]
- Hardoy, J.E.; Mitlin, D.; Satterthwaite, D. Environmental Problems in an Urbanizing World: Finding Solutions in Cities in Africa, Asia and Latin America; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Gobierno Autonomo Descentralizado Durán (GAD-Durán). Mapa de Amenazas por Inundaciones: Durán, Ecuador; 2014. Available online: http://preventionweb.net/go/40953 (accessed on 15 February 2020).
- Arnell, N.W.; Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Chang. 2014, 122, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Huizinga, J.; de Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines; JRC Working Papers JRC105688; Joint Research Centre of the European Commission (JRC): Seville, Spain, 2017. [Google Scholar]
- Tapia, A.J.C. Hydrologic Modelling of an Experimental Area in the Guayas River Basin to Quantify Liquid and Solid Flow Production; Universidad Nacional de La Plata: Quito, Ecuador, 2012. [Google Scholar]
- Evans, D.J. The Elasticity of Marginal Utility of Consumption: Estimates for 20 OECD Countries. Fisc. Stud. 2005, 26, 197–224. [Google Scholar] [CrossRef]
- Kula, E. Estimation of a Social Rate of Interest for India. J. Agric. Econ. 2004, 55, 91–99. [Google Scholar] [CrossRef]
- Lopez, H. The Social Discount Rate: Estimates for Nine Latin American Countries; Policy Research working paper WPS 4639; World Bank: Washington, DC, USA, 2008; Available online: http://documents.worldbank.org/curated/en/135541468266716605/The-social-discount-rate-estimates-for-nine-Latin-American-countries (accessed on 2 September 2020).
Mean | St.Dev | ||
---|---|---|---|
Average Annual Income ($/2011) | 8153 | 3490 | |
Gender | |||
Female | 0.506 | ||
Male | 0.494 | ||
Age Group | |||
0–14 | 0.309 | ||
15–64 | 0.647 | ||
65+ | 0.043 | ||
House Dimension (sqm) | 68.13 | 48.68 | |
House typology | |||
Villas | 0.633 | ||
Independent houses | 0.061 | ||
Apartments in buildings | 0.140 | ||
Wood and cane houses | 0.164 | ||
Construction material | |||
Concrete | 0.817 | ||
Brick-only | 0.014 | ||
Wood | 0.014 | ||
Cane | 0.156 | ||
House ownership | |||
Owner | 0.718 | ||
Tenant | 0.282 |
Countries | γ |
---|---|
Argentina | 1.3 |
Bolivia | 1.5 |
Brazil | 1.8 |
Chile | 1.3 |
Colombia | 1.9 |
Honduras | 1.1 |
Mexico | 1.3 |
Nicaragua | 1.4 |
Peru | 1.9 |
Census Sector | Equity Weight |
---|---|
2002 | 1.388 |
4002 | 1.188 |
6011 | 0.798 |
9003 | 1.647 |
11006 | 1.111 |
11007 | 1.566 |
14004 | 1.359 |
17007 | 1.865 |
18002 | 1.785 |
20007 | 1.503 |
22005 | 1.997 |
28008 | 1.568 |
35004 | 1.103 |
39002 | 0.405 |
41001 | 1.146 |
42010 | 0.731 |
49009 | 0.345 |
55012 | 0.408 |
Sector | Average Household Income (USD) | EAD (USD) | Average EAD (USD) | Median EAD (USD) | Sector | Average Household Income (USD) | EWEAD (USD) | Average EWEAD (USD) | Median EWEAD (USD) |
4002 | 7153 | 13,901 | 1263 | 447 | 18002 | 5452 | 76,014 | 6334 | 1421 |
28008 | 5943 | 12,723 | 1060 | 980 | 4002 | 7153 | 57,056 | 5186 | 841 |
6011 | 9324 | 12,433 | 1130 | 1177 | 28008 | 5943 | 50,473 | 4206 | 1328 |
18002 | 5452 | 11,502 | 958 | 1166 | 6011 | 9324 | 31,884 | 2898 | 1751 |
20007 | 6113 | 8695 | 724 | 556 | 17007 | 5295 | 22,235 | 1853 | 1164 |
17007 | 5295 | 7106 | 592 | 560 | 22005 | 5058 | 13,775 | 1147 | 397 |
14004 | 6538 | 6297 | 524 | 210 | 20007 | 6113 | 12,618 | 1051 | 543 |
22005 | 5058 | 4953 | 413 | 177 | 14004 | 6538 | 9456 | 788 | 467 |
Sector | Average Household Income (USD) | CEAD (USD) | Average CEAD (USD) | Median CEAD (USD) | Sector | Average Household Income (USD) | EWCEAD (USD) | Average EWCEAD (USD) | Median EWCEAD (USD) |
4002 | 7153 | 21,223 | 1929 | 535 | 18002 | 5452 | 180,015 | 15,001 | 1944 |
6011 | 9324 | 18,592 | 1690 | 1728 | 4002 | 7153 | 111,872 | 10,170 | 1065 |
18002 | 5452 | 18,361 | 1530 | 1571 | 28008 | 5943 | 76,053 | 6337 | 1731 |
28008 | 5943 | 17,262 | 1438 | 1390 | 6011 | 9324 | 54,220 | 4929 | 2592 |
20007 | 6113 | 12,541 | 1045 | 662 | 17007 | 5295 | 29,487 | 2457 | 1458 |
17007 | 5295 | 9043 | 753 | 720 | 22005 | 5058 | 21,903 | 1825 | 432 |
14004 | 6538 | 7889 | 657 | 226 | 20007 | 6113 | 18,374 | 1531 | 664 |
22005 | 5058 | 7359 | 613 | 189 | 14004 | 6538 | 11,816 | 984 | 526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontuto, V.; Dalmazzone, S.; Salcuni, F.; Pezzoli, A. Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador. Sustainability 2020, 12, 10068. https://doi.org/10.3390/su122310068
Frontuto V, Dalmazzone S, Salcuni F, Pezzoli A. Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador. Sustainability. 2020; 12(23):10068. https://doi.org/10.3390/su122310068
Chicago/Turabian StyleFrontuto, Vito, Silvana Dalmazzone, Francesco Salcuni, and Alessandro Pezzoli. 2020. "Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador" Sustainability 12, no. 23: 10068. https://doi.org/10.3390/su122310068
APA StyleFrontuto, V., Dalmazzone, S., Salcuni, F., & Pezzoli, A. (2020). Risk Aversion, Inequality and Economic Evaluation of Flood Damages: A Case Study in Ecuador. Sustainability, 12(23), 10068. https://doi.org/10.3390/su122310068