Water Erosion Risk Assessment in the Kenya Great Rift Valley Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Land Use and Land Cover (LULC) Maps
2.4. RUSLE Model Application
2.5. Determination of RUSLE Factors
2.5.1. Rainfall Erosivity (R) Factor
2.5.2. Soil Erodibility (K) Factor
2.5.3. Slope Length and Slope Steepness (LS) Factor
2.5.4. Cover Management Factor (C) Factor
2.5.5. Support Practice (P) Factor
3. Results
3.1. Estimated Soil Erosion Rates in the Great Rift Valley Region of Kenya
3.2. Land Use/Land Cover Changes (LULCC) and Soil Erosion in the Great Rift Valley Region of Kenya
3.3. Estimated Soil Erosion Rates in the Protected Areas within the Great Rift Valley Region of Kenya
3.4. Classification Estimated Mean Erosion Rates by Severity and Conservation Priority
3.5. Estimated Soil Erosion Rates by Slope and Elevation
3.6. Soil Erosion in the Major River Basins
3.7. Estimated Soil Erosion Rates by Major Landform and Soil Types within the KGRV
3.8. Sensitivity Analysis of the RUSLE Model Factors used in the KGRV
3.9. Estimated Soil Erosion Rates in the Agricultural areas within the Central and Southern Rift Valley Region of Kenya (in 2015)
4. Discussion
Overview of Estimated Soil Erosion Risk in the Great Rift Valley Region of Kenya
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC Conversions | Area (ha) | Average Erosion Rate (t/ha/y) | Average Slope (%) |
---|---|---|---|
Bareland to Cropland | 2810 | −11.2 | 7.5 |
Bareland to Dense Forest | 2724 | −23.6 | 15.0 |
Bareland to Grassland | 468,651 | −3.0 | 4.0 |
Bareland to Open Forest | 12,554 | −4.6 | 4.3 |
Bareland to Shrubland | 450,977 | −6.3 | 8.1 |
Cropland to Bareland | 3683 | 12.2 | 4.7 |
Cropland to Dense Forest | 13,471 | −26.4 | 14.6 |
Cropland to Grassland | 75,764 | −4.7 | 6.3 |
Cropland to Open Forest | 3015 | −14.5 | 11.5 |
Cropland to Shrubland | 68,429 | −5.3 | 12.1 |
Dense Forest to Bareland | 1441 | 59.0 | 9.8 |
Dense Forest to Cropland | 164,363 | 31.0 | 15.7 |
Dense Forest to Grassland | 45,609 | 9.2 | 14.2 |
Dense Forest to Open Forest | 73,087 | 1.6 | 20.7 |
Dense Forest to Shrubland | 132,667 | 15.5 | 19.9 |
Grassland to Bareland | 240,603 | 3.7 | 4.3 |
Grassland to Cropland | 753,068 | 10.2 | 9.3 |
Grassland to Dense Forest | 37,950 | −9.6 | 17.6 |
Grassland to Open Forest | 50,646 | −3.8 | 10.5 |
Grassland to Shrubland | 1,228,990 | 1.0 | 7.1 |
Open Forest to Bareland | 4492 | 10.8 | 6.8 |
Open Forest to Cropland | 35,447 | 26.3 | 15.0 |
Open Forest to Dense Forest | 98,021 | −3.8 | 34.6 |
Open Forest to Grassland | 24,458 | 5.7 | 13.8 |
Open Forest to Shrubland | 272,772 | 7.6 | 18.1 |
Shrubland to Bareland | 429,738 | 6.5 | 8.6 |
Shrubland to Cropland | 532,070 | 10.7 | 12.4 |
Shrubland to Dense Forest | 142,017 | −19.5 | 29.7 |
Shrubland to Grassland | 1,507,730 | −0.9 | 5.8 |
Shrubland to Open Forest | 227,208 | −10.1 | 23.2 |
Districts Names | Area (104 ha) | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Slope (%) | ||
---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | ||||
Keiyo | 14.38 | 14.54 | 2.1 | 24.77 | 3.6 | 10.23 | 19.8 |
Marakwet | 15.85 | 13.97 | 2.2 | 23.81 | 3.8 | 9.84 | 25.1 |
Bomet | 14.28 | 10.09 | 14 | 16.20 | 2.3 | 6.11 | 10.2 |
Kericho | 20.83 | 20.05 | 4.2 | 26.06 | 5.4 | 6.01 | 16.0 |
Nandi | 28.36 | 18.61 | 5.3 | 24.11 | 6.8 | 5.50 | 15.3 |
Buret | 13.90 | 13.83 | 1.9 | 18.43 | 2.6 | 4.60 | 15.1 |
Trans Nzoia | 24.42 | 7.37 | 1.8 | 11.57 | 2.8 | 4.20 | 11.5 |
Nakuru | 74.82 | 7.48 | 5.4 | 11.64 | 8.4 | 4.16 | 11.4 |
Uasin Gishu | 33.29 | 5.34 | 1.8 | 8.47 | 2.8 | 3.13 | 9.1 |
Narok | 150.23 | 5.77 | 8.7 | 8.62 | 13 | 2.85 | 13.2 |
Trans Mara | 27.84 | 6.31 | 1.8 | 9.10 | 2.5 | 2.79 | 9.5 |
Nyandarua | 32.68 | 8.44 | 2.8 | 11.20 | 3.7 | 2.76 | 13.6 |
West Pokot | 90.01 | 11.15 | 10 | 13.84 | 12 | 2.69 | 20.7 |
Koibatek | 23.09 | 10.49 | 2.4 | 13.17 | 3 | 2.68 | 15.8 |
Laikipia | 94.17 | 4.12 | 3.9 | 4.77 | 4.5 | 0.65 | 8.9 |
Baringo | 86.45 | 11.23 | 9.5 | 11.43 | 9.7 | 0.20 | 16.3 |
Kiambu | 3.23 | 12.75 | 0.4 | 12.63 | 0.4 | −0.12 | 15.9 |
Turkana | 499.8 | 3.46 | 17.3 | 3.21 | 19 | −0.25 | 10.9 |
Kajiado | 216.83 | 3.72 | 8.1 | 3.43 | 7.4 | −0.29 | 9.9 |
Marsabit | 184.66 | 7.28 | 8.3 | 6.2 | 7 | −1.08 | 6.7 |
Samburu | 209.71 | 6.96 | 14 | 5.75 | 12 | −1.21 | 16.5 |
Districts Names | Extent of LULCC (%) | Average Erosion Rate (t/ha/y) | Average Rainfall (mm/y) | Average Slope (%) |
---|---|---|---|---|
Keiyo | 0.37 | 10.24 | 1195 | 19.8 |
Marakwet | 0.44 | 9.83 | 1143 | 25.1 |
Bomet | 0.55 | 6.16 | 1315 | 10.2 |
Kericho | 0.49 | 6.01 | 1458 | 16 |
Nandi | 0.7 | 5.49 | 1514 | 15.3 |
Buret | 0.33 | 4.6 | 1661 | 15.1 |
Trans Nzoia | 0.83 | 4.17 | 1172 | 11.5 |
Nakuru | 2.03 | 4.13 | 988 | 11.4 |
Uasin Gishu | 1.0 | 3.14 | 1055 | 9.1 |
Narok | 3.23 | 2.85 | 921 | 13.2 |
Nyandarua | 0.99 | 2.78 | 1140 | 13.6 |
West Pokot | 1.6 | 2.74 | 772 | 20.7 |
Koibatek | 0.48 | 2.73 | 1055 | 15.8 |
Trans Mara | 0.77 | 2.7 | 1365 | 9.5 |
Laikipia | 1.96 | 0.64 | 746 | 8.9 |
Baringo | 0.79 | 0.14 | 801 | 16.3 |
Marsabit | 1.88 | −0.12 | 344 | 6.7 |
Turkana | 12.06 | −0.23 | 258 | 10.9 |
Kajiado | 4.11 | −0.31 | 574 | 9.9 |
Kiambu | 0.08 | −0.5 | 923 | 15.9 |
Samburu | 3.52 | −1.21 | 528 | 16.5 |
Dominant Soil Type | Area (104 ha) | Extent (%) | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Slope (%) | ||
---|---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | |||||
Andosols | 66.82 | 3.59 | 6.01 | 4.0 | 11.53 | 7.7 | 5.52 | 12.75 |
Nitosols | 199.03 | 10.7 | 9.46 | 18.8 | 13.9 | 27.6 | 4.44 | 11.87 |
Planosols | 21.17 | 1.13 | 7.31 | 1.5 | 9.91 | 2.0 | 2.6 | 8.26 |
Ferrasols | 132.62 | 7.13 | 4.88 | 6.4 | 6.89 | 9.1 | 2.01 | 7.92 |
Cambisols | 136.24 | 7.32 | 5.56 | 7.5 | 6.34 | 8.6 | 0.78 | 8.65 |
Lithosols | 576.78 | 31.02 | 6.66 | 38.4 | 7.27 | 41.9 | 0.61 | 11.52 |
Vertisols | 101.79 | 5.47 | 2.83 | 2.9 | 3.26 | 3.3 | 0.43 | 5.52 |
Luvisols | 29.22 | 1.57 | 5.12 | 1.4 | 5.48 | 1.6 | 0.36 | 7.92 |
Gleysols | 41.28 | 2.22 | 2.32 | 0.95 | 2.47 | 1.0 | 0.15 | 3.9 |
Solonchaks | 56.60 | 3.12 | 3.89 | 2.2 | 3.66 | 2.0 | −0.23 | 7.14 |
Fluvisols | 15.07 | 0.81 | 3.02 | 0.45 | 2.78 | 0.41 | −0.24 | 3.89 |
Regosols | 283.58 | 15.25 | 6.98 | 19.7 | 6.71 | 19.0 | −0.27 | 11.32 |
Xerosols | 123.39 | 6.63 | 4.62 | 5.7 | 3.02 | 3.7 | −1.6 | 8.29 |
Yermosols | 75.24 | 4.04 | 6.15 | 4.6 | 4.21 | 3.1 | −1.94 | 13.08 |
Protected Area Names | Area (104 ha) | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Slope (%) | ||
---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss(Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | ||||
Chemurokoi | 0.39 | 12.91 | 0.05 | 40.87 | 0.16 | 27.96 | 27.4 |
Kaisungor | 0.11 | 22.47 | 0.02 | 47.04 | 0.05 | 24.56 | 31.1 |
Sogotio | 0.33 | 17.71 | 0.06 | 40.70 | 0.13 | 22.99 | 29.9 |
Metkei | 0.17 | 9.42 | 0.02 | 26.52 | 0.05 | 17.1 | 45.6 |
Kipkabus (Elg-Marak) | 0.06 | 17.77 | 0.01 | 34.15 | 0.02 | 16.37 | 43.7 |
Kessop | 0.25 | 39.43 | 0.10 | 51.86 | 0.13 | 12.43 | 38.6 |
Eastern Mau | 6.59 | 5.94 | 0.39 | 18.18 | 1.20 | 12.24 | 15.7 |
Kerrer | 0.32 | 15.35 | 0.05 | 27.35 | 0.09 | 12 | 26.4 |
Kipkabus (Uasin/Gishu) | 0.70 | 7.16 | 0.05 | 17.79 | 0.12 | 10.63 | 12.2 |
Bahati | 1.12 | 8.90 | 0.10 | 19.32 | 0.22 | 10.42 | 15.1 |
Timboroa | 0.53 | 14.17 | 0.07 | 24.55 | 0.13 | 10.37 | 17.8 |
Kapchemutwa | 0.92 | 28.55 | 0.26 | 38.79 | 0.36 | 10.23 | 37.5 |
Lelan | 1.10 | 21.65 | 0.24 | 31.60 | 0.35 | 9.94 | 37.1 |
Embobut | 2.00 | 17.98 | 0.36 | 27.76 | 0.56 | 9.78 | 34.2 |
Mau Narok | 0.07 | 3.39 | 0.00 | 12.99 | 0.01 | 9.6 | 23.4 |
Marmanet | 2.08 | 5.92 | 0.12 | 15.41 | 0.32 | 9.49 | 16.1 |
Kapolet | 0.13 | 8.91 | 0.01 | 18.18 | 0.02 | 9.26 | 26.3 |
South-western Mau | 8.32 | 4.56 | 0.38 | 13.45 | 1.12 | 8.88 | 16.5 |
Kaptagat | 1.18 | 8.39 | 0.10 | 16.97 | 0.20 | 8.57 | 13.4 |
Transmara | 3.77 | 5.51 | 0.21 | 13.91 | 0.52 | 8.39 | 26.4 |
Maji Mazuri | 0.80 | 5.43 | 0.04 | 13.77 | 0.11 | 8.33 | 15.6 |
Kiptaberr | 1.07 | 8.80 | 0.09 | 16.87 | 0.18 | 8.06 | 22.4 |
Londiani | 2.15 | 7.74 | 0.17 | 15.00 | 0.32 | 7.26 | 15.6 |
Taressia | 0.04 | 14.18 | 0.01 | 20.66 | 0.01 | 6.48 | 10.6 |
Katimok | 0.19 | 23.72 | 0.05 | 30.17 | 0.06 | 6.45 | 29.3 |
Kipkunurr | 1.53 | 10.05 | 0.15 | 16.40 | 0.25 | 6.35 | 28.8 |
Southern Mau | 0.01 | 13.13 | 0.00 | 19.22 | 0.00 | 6.09 | 12.6 |
Kakamega | 0.70 | 20.78 | 0.15 | 26.74 | 0.19 | 5.96 | 15 |
Kilombe Hill | 0.32 | 13.07 | 0.04 | 19.01 | 0.06 | 5.94 | 19.3 |
Ol-arabel | 0.99 | 7.82 | 0.08 | 13.72 | 0.14 | 5.9 | 14 |
Molo | 0.09 | 13.02 | 0.01 | 18.78 | 0.02 | 5.75 | |
North Nandi | 1.13 | 12.00 | 0.13 | 17.67 | 0.20 | 5.67 | 11.6 |
Ol-pusimoru | 3.57 | 4.49 | 0.16 | 10.14 | 0.36 | 5.65 | 15.7 |
Mount Londiani | 2.22 | 5.39 | 0.12 | 10.38 | 0.23 | 4.98 | 18.7 |
Northern Tinderet | 2.94 | 6.45 | 0.19 | 11.35 | 0.33 | 4.9 | 17.3 |
Kapsaret | 0.13 | 4.77 | 0.01 | 9.19 | 0.01 | 4.42 | 8.7 |
Tinderet | 3.40 | 7.13 | 0.24 | 11.33 | 0.38 | 4.2 | 17.1 |
Chemorogok | 1.12 | 9.84 | 0.11 | 13.87 | 0.15 | 4.02 | 19.6 |
Ngong Hills | 0.33 | 8.86 | 0.03 | 11.78 | 0.04 | 2.92 | 11.3 |
Ol-bolossat | 0.36 | 3.24 | 0.01 | 6.03 | 0.02 | 2.79 | 7.1 |
South Nandi | 1.99 | 11.15 | 0.22 | 13.90 | 0.28 | 2.75 | 14.4 |
Menengai | 0.55 | 10.61 | 0.06 | 13.28 | 0.07 | 2.67 | 13.5 |
Leshau | 0.02 | 3.64 | 0.00 | 6.27 | 0.00 | 2.63 | 6.4 |
Kitalale | 0.20 | 5.04 | 0.01 | 7.62 | 0.01 | 2.57 | 7.3 |
Sekhendu | 0.06 | 5.43 | 0.00 | 7.99 | 0.01 | 2.55 | 7.5 |
Mount Elgon | 0.99 | 9.36 | 0.09 | 11.68 | 0.12 | 2.32 | 27.1 |
Kipipiri | 0.43 | 12.86 | 0.06 | 15.12 | 0.07 | 2.26 | 32.3 |
Mukogodo | 2.94 | 10.54 | 0.31 | 12.69 | 0.37 | 2.14 | 24.1 |
Uaso Narok | 0.12 | 4.82 | 0.01 | 6.96 | 0.01 | 2.14 | 8.2 |
Chepalungu | 0.50 | 2.25 | 0.01 | 4.36 | 0.02 | 2.11 | 5.6 |
Rumuruti | 0.62 | 2.95 | 0.02 | 5.03 | 0.03 | 2.08 | 6.8 |
Kapkanyar | 0.70 | 2.72 | 0.02 | 3.83 | 0.03 | 1.11 | 20.2 |
Eburu | 0.82 | 8.09 | 0.07 | 9.17 | 0.07 | 1.07 | 27.2 |
Lariak | 0.52 | 3.81 | 0.02 | 4.87 | 0.03 | 1.05 | 6.7 |
Sibiloi | 14.68 | 2.57 | 0.38 | 3.06 | 0.45 | 0.48 | 9.1 |
Kerio Valley | 0.49 | 1.27 | 0.01 | 1.45 | 0.01 | 0.18 | 5.7 |
Nakuru | 0.05 | 0.95 | 0.00 | 1.06 | 0.00 | 0.1 | 8.1 |
Nasolot | 0.76 | 11.78 | 0.09 | 11.78 | 0.09 | 0 | 21.1 |
Perkerra Catchment | 0.53 | 13.23 | 0.07 | 13.22 | 0.07 | 0 | 14.1 |
Masai Mara | 14.99 | 3.71 | 0.56 | 3.70 | 0.55 | −0.01 | 9 |
South Turkana | 10.45 | 5.14 | 0.54 | 5.11 | 0.53 | −0.02 | 15.4 |
Lake Nakuru | 1.87 | 2.82 | 0.05 | 2.78 | 0.05 | −0.04 | 8 |
Longonot | 0.28 | 10.43 | 0.03 | 10.07 | 0.03 | −0.36 | 17.2 |
Mount Nyiru | 3.83 | 6.44 | 0.25 | 6.03 | 0.23 | −0.41 | 37.6 |
Maralai | 1.72 | 6.47 | 0.11 | 5.87 | 0.10 | −0.6 | 16.2 |
Mukobe | 0.08 | 7.62 | 0.01 | 6.99 | 0.01 | −0.62 | 11.7 |
Samburu | 1.59 | 3.96 | 0.06 | 3.17 | 0.05 | −0.79 | 9.5 |
South Island | 0.86 | 20.25 | 0.17 | 19.08 | 0.16 | −1.16 | 9.7 |
Amboseli | 4.01 | 2.69 | 0.11 | 1.50 | 0.06 | −1.18 | 7 |
Hell’s Gate | 1.19 | 13.63 | 0.16 | 12.17 | 0.15 | −1.45 | 18.6 |
Lake Bogoria | 0.85 | 19.26 | 0.16 | 17.10 | 0.14 | −2.16 | 22.5 |
Loitokitok | 0.22 | 7.62 | 0.02 | 5.24 | 0.01 | −2.38 | 9.2 |
Kabarak | 0.15 | 27.43 | 0.04 | 24.58 | 0.04 | −2.85 | 27.5 |
Kimojoch | 0.08 | 44.33 | 0.03 | 41.45 | 0.03 | −2.87 | 38.8 |
Saimo | 0.10 | 33.20 | 0.03 | 29.46 | 0.03 | −3.74 | 34.1 |
Namanga Hill | 1.06 | 10.74 | 0.11 | 6.58 | 0.07 | −4.15 | 32.6 |
Ndotos Range | 9.51 | 12.42 | 1.18 | 6.98 | 0.66 | −5.43 | 34.1 |
Matthews Range | 9.41 | 10.70 | 1.01 | 5.23 | 0.49 | −5.46 | 31.2 |
Central Island | 0.11 | 18.06 | 0.02 | 9.90 | 0.01 | −8.16 | 10.5 |
References
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Chuenchum, P.; Xu, M.; Tang, W. Estimation of Soil Erosion and Sediment Yield in the Lancang–Mekong River Using the Modified Revised Universal Soil Loss Equation and GIS Techniques. Water 2020, 12, 135. [Google Scholar] [CrossRef] [Green Version]
- Blake, W.H.; Rabinovich, A.; Wynants, M.; Kelly, C.; Nasseri, M.; Ngondya, I.; Patrick, A.; Mtei, K.; Munishi, L.; Boeckx, P.; et al. Soil erosion in East Africa: An interdisciplinary approach to realising pastoral land management change. Environ. Res. Lett. 2018, 13, 124014. [Google Scholar] [CrossRef] [Green Version]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef] [PubMed]
- Nguru, P.M.; Rono, D.K. Combating Desertification in Kenya. In Combating Desertification in Asia, Africa and the Middle East; Heshmati, G.A., Squires, V., Eds.; Springer Science & Business: New York, NY, USA; London, UK, 2013; pp. 139–151. [Google Scholar] [CrossRef]
- Van Straaten, P. Rocks for Crops: Agrominerals of Sub-Saharan Africa; ICRAF: Nairobi, Kenya, 2002. [Google Scholar]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N.; Kawai, T.; Sultan, D.; Ebabu, K.; Belay, A.S. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol. Process. 2017, 31, 4555–4567. [Google Scholar] [CrossRef]
- Ameso, E.A.; Bukachi, S.A.; Olungah, C.O.; Haller, T.; Wandibba, S.; Nangendo, S. Pastrol Resilience among the Maasai Pastrolists of Laikipia County, Kenya. Land 2018, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Government of Kenya. Statistical Abstract. 2019. Available online: https://www.knbs.or.ke/?wpdmpro=statistical-abstract-2019 (accessed on 3 September 2020).
- Mulinge, W.; Gicheru, P.; Murithi, F.; Maingi, P.; Kihiu, E.; Kirui, O.K.; Mirzabaev, A. Economics of Land Degradation and Improvement in Kenya. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 471–498. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment and Forestry. Land Degradation Assessment in Kenya-March. 2016. Available online: http://www.environment.go.ke/wp-content/uploads/2018/08/LADA-Land-Degradation-Assessment-in-Kenya-March-2016.pdf (accessed on 12 July 2020).
- Boitt, M.; Albright, O.; Kipkulei, H. Assessment of Soil Erosion and Climate Variability on Kerio Valley Basin, Kenya. J. Geosci. Environ. Prot. 2020, 8, 97–114. [Google Scholar] [CrossRef]
- Cohen, M.J.; Brown, M.T.; Shepherd, K.D. Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agric. Ecosyst. Environ. 2006, 114, 249–269. [Google Scholar] [CrossRef]
- Angima, S.; Stott, D.; O’Neill, M.; Ong, C.K.; Weesies, G.A. Soil Erosion Prediction Using RUSLE for Central Kenya Highland Conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Gachene, C.K.K.; Mbuvi, J.P.; Jarvis, N.J.; Linner, H. Soil Erosion Effects on Soil Properties in a Highland Area of Central Kenya. Soil Sci. Soc. Am. J. 1997, 61, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Vigani, M.; Dudu, H.; Ferrari, E.; Mainar, A. Estimation of Food Demand Parameters in Kenya A Quadratic Almost Ideal Demand System (QUAIDS) Approach; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Were, K.O.; Dick, Ø.B.; Singh, B.R. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin, Kenya. Appl. Geogr. 2013, 41, 75–86. [Google Scholar] [CrossRef]
- Muriithi, F.K. Land use and land cover (LULC) changes in semi-arid sub-watersheds of Laikipia and Athi River basins, Kenya, as influenced by expanding intensive commercial horticulture. Remote Sens. Appl. Soc. Environ. 2016, 3, 73–88. [Google Scholar] [CrossRef]
- Muchena, F.N. Indicators for Sustainable Land Management in Kenya’s Context. GEF Land Degradation Focal Area Indicators; ETC-East Africa: Nairobi, Kenya, 2008. [Google Scholar]
- Dregne, H.E. Land Degradation in the Drylands. Arid Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Ministry of Agriculture Livestock Fisheries and Irrigation. Towards Sustainable Agricultral Transformation and Food Security in Kenya 2019–2029; Government Press: Nairobi, Kenya, 2019. Available online: http://www.kilimo.go.ke/wp-content/uploads/2019/05/ASTGS-Long-version.pdf (accessed on 3 September 2020).
- Hirons, L.; Turner, A. The Impact of Indian Ocean Mean-State Biases in Climate Models on the Representation of the East African Short Rains. J. Clim. 2018, 31, 6611–6631. [Google Scholar] [CrossRef]
- Obando, J.A.; Onywere, S.; Shisanya, C.; Ndubi, A.; Masiga, D.; Irura, Z.; Mariita, N.; Maragia, H. Impact of Short-Term Flooding on Livelihoods in the Kenya Rift Valley Lakes. In Geomorphology and Society, Advances in Geographical and Environmental Sciences; Meadows, M.E., Lin, J.-C., Eds.; Springer: Tokyo, Japan, 2016; pp. 193–215. [Google Scholar] [CrossRef]
- Mati, B.; Morgan, R.; Quinton, J.; Brewer, T.; Liniger, H. Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng’iro North basin of Kenya. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 78–86. [Google Scholar] [CrossRef]
- Luvai, A.; Obiero, J.P.; Omuto, C. Methods for Erosion Estimates in Assessment of Soil Degradation: A Review for Catchments in Kenya. Int. J. Eng. Res. 2020. [Google Scholar] [CrossRef]
- Avwunudiogba, A.; Franklin Hudson, P. A Review of Soil Erosion Models with Special Reference to the needs of Humid Tropical Mountainous Environments. Eur. J. Sustain. Dev. 2014, 3, 299. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.S.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; US Department of Agriculture Science and Education Administration: Washington, DC, USA, 1978.
- Hategekimana, Y.; Allam, M.; Meng, Q.; Nie, Y.; Mohamed, E. Quantification of Soil Losses along the Coastal Protected Areas in Kenya. Land 2020, 9, 137. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Liu, T.; Maganda, A.; Isabwe, A. Soil Erosion Risk Assessment in Uganda. Forests 2017, 8, 52. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability 2020, 12, 9740. [Google Scholar] [CrossRef]
- Defersha, M.B.; Melesse, A.M.; McClain, M.E. Watershed scale application of WEPP and EROSION 3D models for assessment of potential sediment source areas and runoff flux in the Mara River Basin, Kenya. CATENA 2012, 95, 63–72. [Google Scholar] [CrossRef]
- Mati, B.; Morgan, R.; Quinton, J. Soil erosion modelling with EUROSEM at Embori and Mukogodo catchments, Kenya. Earth Surf. Process. Landf. 2006, 31, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Hunink, J.E.; Niadas, I.A.; Antonaropoulos, P.; Droogers, P.; de Vente, J. Targeting of intervention areas to reduce reservoir sedimentation in the Tana catchment (Kenya) using SWAT. Hydrol. Sci. J. 2013, 58, 600–614. [Google Scholar] [CrossRef] [Green Version]
- Schürz, C.; Mehdi, B.; Kiesel, J.; Schulz, K.; Herrnegger, M. A systematic assessment of uncertainties in large scale soil loss estimation from different representations of USLE input factors—A case study for Kenya and Uganda. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–35. [Google Scholar] [CrossRef]
- UNESCO. World Heritage List-Kenya Lake System in the Great Rift Valley. Available online: https://whc.unesco.org/en/list/1060 (accessed on 12 July 2020).
- Eshiamwata, G.W. Monitoring Habitat at Key Biodiversity Sites in Africa Using Remote Sensing: Land Cover Change at important Bird Areas in Eastern Africa; University of Nairobi: Nairobi, Kenya, 2012; Available online: http://erepository.uonbi.ac.ke/handle/11295/6777 (accessed on 7 June 2020).
- FAO. Digital Soil Map of the World. Available online: http://data.fao.org/maps/wms?styles=geonetwork_DSMW_14116_style (accessed on 3 September 2020).
- World Resources Institute. Kenya GIS Data-Annual Projected Water Balance by Subdrainage Area in Kenya, 2000 and 2010. In World Resources Institute; 2007; Available online: https://www.wri.org/resources/data-sets/kenya-gis-data#water (accessed on 3 September 2020).
- Nambajimana, J.d.D.; He, X.; Zhou, J.; Justine, M.F.; Li, J.; Khurram, D.; Mind’je, R.; Nsabimana, G. Land Use Change Impacts on Water Erosion in Rwanda. Sustainability 2019, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey. U.S. Geological Survey Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 3 September 2020).
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (Rusle); United States Department of Agriculture: Washington, DC, USA, 1997; Volume 703.
- Weldu Woldemariam, G.; Edo Harka, A. Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia. Land 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Lo, A.; El-Swaify, S.A.; Dangler, E.W.; Shinshiro, L. Effectiveness of El30 as An Erosivity Index in Hawaii; E1-Swaify, S.A., Moldenhauer, W.C., Lo, A., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985. [Google Scholar]
- Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Ayugi, B.; Tan, G.; Ullah, W.; Boiyo, R.; Ongoma, V. Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016. Atmos. Res. 2019, 225, 96–109. [Google Scholar] [CrossRef]
- Kimaru, A.N.; Gathenya, J.M.; Cheruiyot, C.K. The Temporal Variability of Rainfall and Streamflow into Lake Nakuru, Kenya, Assessed Using SWAT and Hydrometeorological Indices. Hydrology 2019, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa: Validation of the CHIRPS Satellite Rainfall Estimates. Q. J. R. Meteorol. Soc. 2018, 144. [Google Scholar] [CrossRef] [Green Version]
- Sujatha, E.R.; Sridhar, V. Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A Case-Study of the Palar Sub-Watershed in Kodaikanal, South India. Water 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 5, 427–433. [Google Scholar]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the universal soil loss equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Nyssen, J.; Simegn, G.; Taha, N. An upland farming system under transformation: Proximate causes of land use change in Bela-Welleh catchment (Wag, Northern Ethiopian Highlands). Soil Tillage Res. 2009, 103, 231–238. [Google Scholar] [CrossRef]
- Hurni, H. Erosion-Productivity-Conservation Systems in Ethiopia. In Proceedings of the IV International Conference on Soil Conservation on Soil Conservation, Maracey, Venezuela, 3–9 November 1985; pp. 654–674. [Google Scholar]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K.; Yang, D.W.; Shinjiro, K.; Taikan, O.; Toshio, K.; Katumi, M. Global potential soil erosion with reference to land use and climate changes. Hydrological Process. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Girma, R.; Gebre, E. Spatial modeling of erosion hotspots using GIS-RUSLE interface in Omo-Gibe river basin, Southern Ethiopia: Implication for soil and water conservation planning. Environ. Syst. Res. 2020, 9, 19. [Google Scholar] [CrossRef]
- Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the chemoga watershed, blue nile basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Taye, G.; Poesen, J.; Vanmaercke, M.; Wesemael, B.V.; Martens, L.; Teka, D.; Nyssen, J.; Deckers, J.; Vanacker, V.; Haregeweyn, N.; et al. Evolution of the effectiveness of stone bunds and trenches in reducing runoff and soil loss in the semi-arid Ethiopian highlands. Z. Geomorphol. 2015, 59, 477–493. [Google Scholar] [CrossRef]
- Shin, G. The Analysis of Soil Erosion Analysis in Watershed Using GIS; Gang-Won National University: Chuncheon, Korea, 1999. [Google Scholar]
- UNEP-WCMC. Protected Areas Delimited by the United Nations Environment Programme (UNEP) and the World Conservation Monitoring Centre (WCMC). Available online: https://www.protectedplanet.net/ (accessed on 3 September 2020).
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- GoK. National Water Master Plan 2030, Volume I—Executive Summary. 2013. Available online: https://wasreb.go.ke/downloads/National%20Water%20Master%20Plan%202030%20Exec.%20Summary%20Vol.%201%20Main%201.pdf (accessed on 12 July 2020).
- FAO. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; Volume 106. [Google Scholar]
- Stocking, M. Rates of erosion and sediment yield in the African environment. In Proceedings of the Challenges in African Hydrology and Water Resources, Harare, Zimbabwe, 11–16 July 1984; pp. 285–295. [Google Scholar]
- Tamene, L.; Adimassu, Z.; Aynekulu, E.; Yaekob, T. Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 221–230. [Google Scholar] [CrossRef]
- Wambui, M.; Opere, A.; Githaiga, J.; Karanja, F. Assessing the impacts of climate variability and climate change on biodiversity in Lake Nakuru, Kenya. Bonorowo Wetl. 2018, 8, 13–24. [Google Scholar] [CrossRef]
- Olago, D.; Opere, A.; Barongo, J. Holocene palaeohydrology, groundwater and climate change in the lake basins of the Central Kenya Rift. Hydrol. Sci. J. J. Des. Sci. Hydrol. 2009, 54. [Google Scholar] [CrossRef]
- Mubea, K.; Menz, G. Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data. Adv. Remote. Sens. 2012, 1, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Mubea, K.; Goetzke, R.; Menz, G. Simulating Urban Growth in Nakuru (Kenya) Using Java-Based Modelling Platform XULU. In Proceedings of the 2013 European Modelling Symposium, Manchester, UK, 20–22 November 2013; pp. 103–108. [Google Scholar]
- Harper, D.M.; Mavuti, K.M. Lake Naivasha, Kenya: Ecohydrology to guide the management of a tropical protected area. Ecohydrol. Hydrobiol. 2004, 4, 287–305. [Google Scholar]
- Willy, D.K.; Zhunusova, E.; Holm-Müller, K. Estimating the joint effect of multiple soil conservation practices: A case study of smallholder farmers in the Lake Naivasha basin, Kenya. Land Use Policy 2014, 39, 177–187. [Google Scholar] [CrossRef]
- Eric, O.O.; Onyango, J.; Obudho, P.A. Lake Baringo; Experince and Lessons Learnt Brief; University of Nairobi: Nairobi, Kenya, 2006. [Google Scholar]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Gizaw, T.; Yalemtsehay, D.; Kalkidan, F. Soil Erosion Risk Assessment Using GIS Based USLE Model for Soil and Water Conservation Planning in Somodo Watershed, South West Ethiopia. Int. J. Environ. Agric. Res. 2018, 4, 35–43. [Google Scholar]
- Ligonja, P.; Shrestha, R. Soil Erosion Assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach. Land Degrad. Dev. 2013, 26. [Google Scholar] [CrossRef]
- Widgren, M.S. Islands of Intensive Agriculture in Eastern Africa; Ohio University Press: Athens, OH, USA, 2004. [Google Scholar]
- Sutherland, R.A.; Bryan, K.B. Runoff and erosion from a small semiarid catchment, Baringo district, Kenya. Appl. Geogr. 1990, 10, 91–109. [Google Scholar] [CrossRef]
- Kiepe, P. Cover and Barrier Effect of Cassia Siamea Hedgerows on Soil Conservation in Semi-Arid Kenya. Soil Technol. 1996, 9, 161–171. [Google Scholar] [CrossRef]
- Tiffen, M.; Mortimore, M.; Gichuki, F. More People Less Erosion; Environmental Recovery in Kenya; ACTS Press: Nairobi, Kenya, 1994. [Google Scholar]
- Ruto, A.; Gachene, C.; Gicheru, P.; Mburu, D.; Khalif, Z. Crop yields along the toposequence of terraced andosols in Narok, Kenya. Trop. Subtrop. Agroecosyst. 2017, 20, 35–47. [Google Scholar]
- Zhunusova, E.; Kyalo Willy, D.; Holm-Müller, K. An Analysis of Returns to Intergrated Soil Conservation Practices in the Lake Naivasha Basin, Kenya. In Proceedings of the 4th International Conference of the African Association of Agricultural Economists, ICAAAE, Hammamet, Tunisia, 22–25 September 2013. [Google Scholar]
- Baumhardt, R.L.B.-C. Soil: Conservation Practices. In Encyclopedia of Agriculture and Food Systems; Alfen, N.V., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 5, pp. 153–165. [Google Scholar]
- Thapa, P. Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environ. Syst. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Le Roux, J.J.; Morgenthal, T.L.; Malherbe, J.; Pretorius, D.J.; Sumner, P.D. Water erosion prediction at a national scale for South Africa. Water SA 2008, 34, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Van der Knijff, J.J.R.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Soil Bureau, Joint Research Centre of the European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Xiong, M.-Q.; Sun, R.; Chen, L.-D. Global analysis of support practices in USLE-based soil erosion modeling. Prog. Phys. Geogr. Earth Environ. 2019, 43. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Yang, J.; Pu, L.; Yang, C.; Yu, L.; Chang, L.; Bu, K. Intergrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China. Sustainability 2016, 8, 317. [Google Scholar] [CrossRef]
- Molnár, D.K.; Julien, P.Y. Estimation of upland erosion using GIS. Comput. Geosci. 1998, 24, 183–192. [Google Scholar] [CrossRef]
Variables | Datasets | Data Source |
---|---|---|
Terrain | DEM | SRTM GL1 version (30 m) [42] |
http://earthexplorer.usgs.gov/ (NASA) | ||
Soil | Soil Properties | Africa Soil Information Service (AfSIS) (250 m) [43] |
https://files.isric.org/public/afsis250m/ (ISRIC-WSI) | ||
Land | LULC Map | Land Use Land Cover (LULC) Maps of 1990 and 2015 (30 m) |
Department of Resource Surveys and Remote Sensing (DRSRS), MoE&F(K) | ||
Climate | Rainfall Map | CHIRP Global Rainfall Data (5 arcsec) [44] between 1981 to 2015 periods |
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/ (USGS-EROS) |
Land Use | C Factor | Sources |
---|---|---|
Dense Forest | 0.001 | [58,59] |
Open Forest | 0.01 | [58,59,60] |
Shrubland | 0.08 | [36,61] |
Grassland | 0.05 | [58,60,62] |
Cropland | 0.15 | [58,60,61,63] |
Bareland | 0.40 | [59,63] |
Slope (%) | Conservation Support Practices (P Factor) | ||
---|---|---|---|
Contouring | Strip Cropping | Terracing | |
0.0–7.0 | 0.55 | 0.27 | 0.10 |
7.0–11.3 | 0.60 | 0.30 | 0.12 |
11.3–17.6 | 0.80 | 0.40 | 0.16 |
17.6–26.8 | 0.90 | 0.45 | 0.18 |
>26.8 | 1.00 | 0.50 | 0.20 |
Erosion Risk Class | Erosion Rate Class (t/ha/y) | Year 1990 | Year 2015 | Net Change (t/ha/y) | ||||
---|---|---|---|---|---|---|---|---|
Area (104 ha) | Extent% | Erosion Rate (t/ha/y) | Area (104 ha) | Extent% | Erosion Rate (t/ha/y) | |||
Very Low | 0–1 | 555.57 | 29.88 | 0.45 | 569.62 | 30.67 | 0.44 | −0.01 |
Low | 1–10 | 992.65 | 53.4 | 3.42 | 937.33 | 50.37 | 3.49 | 0.07 |
Medium | 10–20 | 162.50 | 8.75 | 14.19 | 169.06 | 9.09 | 14.2 | 0.01 |
High medium | 20–40 | 107.83 | 5.8 | 27.79 | 118.38 | 6.41 | 27.98 | 0.19 |
High | 40–80 | 35.64 | 1.91 | 52.28 | 54.31 | 2.92 | 53.68 | 1.40 |
Very High | 80–100 | 2.58 | 0.13 | 88.41 | 5.61 | 0.3 | 88.57 | 0.16 |
Extremely High | >100 | 2.07 | 0.13 | 284.41 | 4.52 | 0.24 | 168.85 | −79.56 |
LULC Types | Dense Forest | Open Forest | Shrub Land | Grass Land | Crop Land | Bare Land | Erosion Rate 2015 |
---|---|---|---|---|---|---|---|
Dense Forest | - | 1.6 | 15.5 | 9.2 | 31.0 | 59.0 | 1.2 |
Open Forest | −3.8 | - | 7.6 | 5.7 | 26.3 | 10.8 | 2.9 |
Shrubland | −19.5 | −10.1 | - | −0.9 | 10.7 | 6.5 | 7.1 |
Grassland | −9.6 | −3.8 | 1.0 | - | 10.2 | 3.7 | 2.0 |
Cropland | −26.4 | −14.5 | −5.3 | −4.7 | - | 12.2 | 20.6 |
Bareland | −23.6 | −4.6 | −6.3 | −3.0 | −11.2 | - | 6.3 |
Erosion Rate 1990 | 1.5 | 4.0 | 7.2 | 3.5 | 15.8 | 6.4 | - |
Net Change (1990–2015) | −0.3 | −1.1 | −0.1 | −1.5 | 4.8 | −0.1 | 0.9 |
Erosion Class (t/ha/y) | Severity Class | Year 1990 | Year 2015 | Net Change (t/ha/y) | Priority Level | ||||
---|---|---|---|---|---|---|---|---|---|
Area (104 ha) | Extent (%) | Erosion Rate (t/ha/y) | Area (104 ha) | Extent (%) | Erosion Rate (t/ha/y) | ||||
0–5 | Slight | 1333.01 | 71.73 | 1.6 | 1290.70 | 69.46 | 1.54 | −0.06 | 6th |
5–10 | Moderate | 215.21 | 11.57 | 7.07 | 216.25 | 11.63 | 7.11 | 0.04 | 5th |
10–20 | High | 162.50 | 8.74 | 14.19 | 169.06 | 9.09 | 14.2 | 0.01 | 4th |
20–40 | Very High | 107.83 | 5.8 | 27.79 | 118.38 | 6.36 | 27.98 | 0.19 | 3rd |
40–80 | Severe | 35.64 | 1.91 | 52.28 | 54.31 | 2.92 | 53.68 | 1.40 | 2nd |
>80 | Very Severe | 4.65 | 0.25 | 175.67 | 10.14 | 0.54 | 124.39 | −51.28 | 1st |
Slope (%) | Area (104 ha) | Extent % | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Rainfall (mm/y) | ||
---|---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | |||||
0–7 | 1142.27 | 61.45 | 1.76 | 20.1 | 1.85 | 21.1 | 0.09 | 522 |
7–11.3 | 238.24 | 12.81 | 5.75 | 13.7 | 6.59 | 15.7 | 0.84 | 724 |
11.3–17.6 | 163.36 | 8.78 | 10.23 | 16.7 | 12.48 | 20.4 | 2.25 | 807 |
17.6–26.8 | 128.00 | 6.88 | 14.99 | 19.2 | 18.53 | 23.7 | 3.54 | 809 |
>26.8 | 186.97 | 10.08 | 24.95 | 46.6 | 27.54 | 51.4 | 2.59 | 756 |
Elevation (m.a.s.l) | Area (104 ha) | Extent % | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Rainfall (mm/y) | ||
---|---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | |||||
<500 | 137.99 | 7.42 | 3.42 | 4.7 | 2.32 | 3.2 | −1.1 | 298 |
500–1000 | 654.75 | 35.22 | 3.85 | 25.2 | 3.63 | 23.7 | −0.22 | 313 |
1000–1500 | 371.19 | 19.96 | 7.02 | 26.1 | 6.66 | 24.7 | −0.36 | 612 |
1500–2000 | 425.87 | 22.93 | 8.05 | 34.3 | 9.14 | 38.9 | 1.09 | 900 |
>2000 | 269.05 | 14.47 | 9.67 | 26.0 | 15.54 | 41.8 | 5.87 | 1128 |
Sub-Basin Name | Area (104 ha) | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Slope (%) | ||
---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | ||||
Lake Victoria | 263.10 | 9.42 | 24.7 | 13.70 | 36.0 | 4.28 | 12.6 |
Lake Nakuru | 23.20 | 6.74 | 1.5 | 10.93 | 2.5 | 4.19 | 12.0 |
Ewaso Ngiro South-Narok | 88.22 | 5.94 | 5.2 | 9.21 | 8.1 | 3.27 | 13.4 |
Lake Naivasha | 32.39 | 8.70 | 2.8 | 10.80 | 3.5 | 2.10 | 13.5 |
Lake Bogoria-Baringo | 77.40 | 10.13 | 7.8 | 12.11 | 9.3 | 1.98 | 14.6 |
Turkwel River | 203.46 | 5.93 | 12.1 | 6.74 | 13.7 | 0.81 | 14.1 |
Kerio Valley | 174.42 | 7.05 | 12.3 | 7.75 | 13.5 | 0.70 | 13.5 |
Suguta | 130.62 | 8.10 | 10.6 | 8.14 | 10.6 | 0.04 | 16.3 |
Lotikipi Plains | 202.19 | 2.55 | 5.1 | 2.45 | 4.9 | −0.10 | 11.1 |
Ewaso Ngiro South-Kajiado | 82.76 | 6.03 | 5.0 | 5.89 | 4.9 | −0.14 | 11.9 |
Athi River | 137.06 | 3.00 | 4.1 | 2.69 | 3.6 | −0.31 | 9.40 |
Lake Turkana | 188.40 | 5.97 | 11.2 | 5.37 | 10.1 | −0.60 | 10.9 |
Ewaso Ngiro | 255.60 | 5.09 | 13 | 4.37 | 11.1 | −0.72 | 12.9 |
Landform Types | Area (104 ha) | Extent (%) | Year 1990 | Year 2015 | Net Change (t/ha/y) | Average Slope (%) | ||
---|---|---|---|---|---|---|---|---|
Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | Erosion Rate (t/ha/y) | Soil Loss (Mt/y) | |||||
Mountains | 201.98 | 10.86 | 10.57 | 21.3 | 14.91 | 30.1 | 4.34 | 19.35 |
Escarpment | 15.13 | 0.81 | 28.09 | 4.2 | 30.89 | 4.6 | 2.8 | 32.86 |
Plateaus | 342.70 | 18.43 | 6.95 | 23.8 | 8.47 | 29.0 | 1.52 | 9.67 |
Mountain Foot ridges | 241.16 | 12.97 | 12.55 | 30.2 | 13.62 | 32.8 | 1.07 | 21.19 |
Foot Slope | 147.56 | 7.93 | 4.41 | 6.5 | 5.25 | 7.7 | 0.84 | 7.03 |
Plain | 564.82 | 30.38 | 2.4 | 13.5 | 2.34 | 13.2 | −0.06 | 4.98 |
Complex Landforms | 93.72 | 5.1 | 6.46 | 6.0 | 6.39 | 5.9 | −0.07 | 9.11 |
Alluvial Plain | 125.04 | 6.72 | 1.35 | 1.6 | 1.16 | 1.4 | −0.19 | 3.13 |
Valley | 21.46 | 1.15 | 6.01 | 1.2 | 5.35 | 1.1 | −0.66 | 8.24 |
Volcanic Shield/Craters | 26.56 | 1.42 | 9.34 | 2.4 | 8.66 | 2.3 | −0.68 | 17.29 |
Depression | 78.69 | 4.23 | 6.17 | 4.8 | 4.74 | 3.7 | −1.43 | 5.21 |
Description | Minimum Erosion Rate (t ha−1y−1) | Maximum Erosion Rate (t ha−1y−1) | Average Erosion Rate (t ha−1y−1) | Standard Deviation |
---|---|---|---|---|
Removal of R | 0 | 142.78 | 0.010 | 0.049 |
Removal of K | 1.88 | 8,438,827 | 1127.43 | 4034.52 |
Removal of LS | 1.24 | 38.23 | 11.25 | 4.35 |
Removal of C | 0.19 | 545,818.88 | 93.19 | 295.96 |
Studies | Case Study | Mean Erosion Rates (t ha−1 y−1) | Method |
---|---|---|---|
Fenta et al. [4] | Kenya & All croplands | 6.95 and 26.0 | RUSLE |
Haregeweyn et al. [63] | Cultivated lands, Upper Blue Nile | 28.8 | RUSLE |
Kogo et al. [31] | Lake Victoria Basin, Western Kenya | 7.5–12.3 | RUSLE |
Defersha et al. [32] | Bush land, Mara River Basin | 7 | WEPP & EROSION 3D |
Aneseyee et al. [79] | Omo-Gibe Basin (ERV) | 17.65 | RUSLE |
Hategekimana et al. [28] | Kenyan Coast | 10–27.9 | RUSLE |
Ligonja and Shrestha [81] | Kondoa, Tanzania (ERV) | 15.7 | USLE |
Sutherland and Bryan [83] | Lake Baringo sub-basin | 16–96 | Plot study |
Mati et al. [24] | Upper EwasoNg’irosub-basin | 0–51.3 | Plot study |
Kiepe [84] | Machakos, Kenya | 16–36 | Plot study |
Tiffen et al. [85] | Athi basin area | 15.0 | Plot study |
LULC | Mean C Factor Value (Using Durigton Equation with MODIS NDVI Data) | Mean Erosion Rate (2015) (t ha−1 y−1) |
---|---|---|
Dense Forest | 0.16 | 52.9 |
Open Forest | 0.22 | 40.5 |
Shrubland | 0.30 | 22.2 |
Grassland | 0.33 | 9.8 |
Cropland | 0.21 | 26.9 |
Bareland | 0.42 | 6.59 |
Overall | 0.32 | 19.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watene, G.; Yu, L.; Nie, Y.; Zhu, J.; Ngigi, T.; Nambajimana, J.d.D.; Kenduiywo, B. Water Erosion Risk Assessment in the Kenya Great Rift Valley Region. Sustainability 2021, 13, 844. https://doi.org/10.3390/su13020844
Watene G, Yu L, Nie Y, Zhu J, Ngigi T, Nambajimana JdD, Kenduiywo B. Water Erosion Risk Assessment in the Kenya Great Rift Valley Region. Sustainability. 2021; 13(2):844. https://doi.org/10.3390/su13020844
Chicago/Turabian StyleWatene, George, Lijun Yu, Yueping Nie, Jianfeng Zhu, Thomas Ngigi, Jean de Dieu Nambajimana, and Benson Kenduiywo. 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region" Sustainability 13, no. 2: 844. https://doi.org/10.3390/su13020844
APA StyleWatene, G., Yu, L., Nie, Y., Zhu, J., Ngigi, T., Nambajimana, J. d. D., & Kenduiywo, B. (2021). Water Erosion Risk Assessment in the Kenya Great Rift Valley Region. Sustainability, 13(2), 844. https://doi.org/10.3390/su13020844