Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Tubers
2.2. Period of Trials and Conditions
2.3. Equipment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- A significant impact of potato tuber UV-C irradiation on the size of natural losses was observed.
- A reduction in potato tuber weight loss caused by transpiration and respiration was shown in comparison to the control sample.
- Jelly variety reacted to UV-C radiation, demonstrating the reduction in the sprout weight.
- The result of the experiment indicates that the proposed physical UV-C method can be applied in practice and can be used as a way of reducing the natural defects of stored potato tubers.
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Turtoi, M. Ultraviolet light treatment of fresh fruits and vegetables surface. J. Agroaliment. Process. Technol. 2013, 19, 325–337. [Google Scholar]
- Beuchat, L.R. Surface Decontamination of Fruits and Vegetables Eaten Raw: A Review; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Yaun, B.; Sumner, S.; Eifert, J.; Marcy, J. Inhibition of pathogens on fresh produce by ultraviolet energy. Int. J. Food Microbiol. 2004, 90, 1–8. [Google Scholar] [CrossRef]
- Allende, A.; McEvoy, J.; Tao, Y.; Luo, Y. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro. Food Control 2009, 20, 230–234. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Rojas-Graü, A.; Gonzáles, L.A.; Varela, P.; Soliva-Fortuny, R.; Hernando Hernando, I.; Pérez Munuera, I.; Fiszman, S.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of freshcut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148. [Google Scholar] [CrossRef]
- Kader, A.A.; Zagory, D.; Kerbel, E.L. Modified atmosphere packaging of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1989, 28, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Soliva-Fortuny, R.C.; Elez-Martínez, P.; Martín-Belloso, O. Microbiological and biochemical stability of fresh-cut apples preserved by modified atmosphere packaging. Innov. Food Sci. Emerg. Technol. 2004, 5, 215–224. [Google Scholar] [CrossRef]
- Saxena, A.; Singh Bawa, A.; Srinivas Raju, P. Use of modified atmosphere packaging to extentd shelflife of minimally processed jackfruit (Artocarpus heterophyllus L.) bulbs. J. Food Eng. 2008, 87, 455–466. [Google Scholar] [CrossRef]
- Oliveira, M.; Usall, J.; Solsona, C.; Alegre, I.; Vinas, I.; Abadias, M. Effects of packaging type and storage temperature on the growth of foodborne pathogens on shreddred ‘Romaine’ lettuce. Food Microbiol. 2010, 27, 455–466. [Google Scholar] [CrossRef]
- Sandhya. Modified atmosphere packaging of fresh produce: Current status and future needs. LWT—Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Abadias, M.; Alegre, I.; Oliveira, M.; Altisent, R.; Vinas, I. Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. Food Control 2012, 27, 37–44. [Google Scholar] [CrossRef]
- Harvey, J.M. Optimum environments for the transport of fresh fruits and vegetables. Int. J. Refrig. 1981, 4, 293–298. [Google Scholar] [CrossRef]
- Tano, K.; Oule, M.K.; Doyon, G.; Lencki, R.W.; Arul, J. Comparative evaluation on the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biol. Technol. 2007, 46, 212–221. [Google Scholar] [CrossRef]
- Zhang, R.; Beuchat, L.R.; Chinnan, M.S.; Shewflet, R.L.; Haung, Y.W. Inactivation of Salmonella Montevideo on tomatoes by applying cellulose-based edible Films. J. Food Prot. 1996, 59, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Vina, S.Z.; Mugridge, A.; Garcia, M.A.; Ferreyra, R.M.; Martino, M.N.; Chaves, A.R.; Zaritzky, N.E. Effects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts. Food Chem. 2007, 103, 701–709. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martin-Belloso, O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, H.P.; Jimeez, A.; Munoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Ramana Rao, T.V. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Shama, G. Ultraviolet light. In Handbook of Food Science, Technology, and Engineering; Hui, Y.H., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 122-1–122-14. [Google Scholar]
- Gardner, D.W.; Shama, G. Modeling UV-induced inactivation of microorganisms on surfaces. J. Food Prot. 2000, 63, 63–70. [Google Scholar] [CrossRef]
- Lu, J.Y.; Stevens, C.; Khan, V.A.; Kabwe, M.; Wilson, C.L. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. J. Food Qual. 1991, 14, 299–305. [Google Scholar] [CrossRef]
- D’hallewin, G.; Schirra, M.; Manueddu, E.; Piga, A.; Ben-Yehoshua, S. Scoparone and scopoletin accumulation and ultraviolet-C induced resistance to postharvest decay in oranges as influenced by harvest date. J. Am. Soc. Hortic. Sci. 1999, 124, 702–707. [Google Scholar] [CrossRef] [Green Version]
- Lamikanra, O.; Kueneman, D.; Ukuku, D.; Bett-Garber, K.L. Effect of Processing Under Ultraviolet Light on the Shelf Life of Fresh-Cut Cantaloupe Melon. J. Food Sci. 2005, 70, C534–C539. [Google Scholar] [CrossRef]
- Darvishi, S.; Fatemi, A.; Davari, K. Keeping quality of use of fresh ’Kurdistan’ strawberry by UV-C radiation. World Appl. Sci. J. 2012, 17, 826–831. [Google Scholar]
- Ben-Yehoshua, S.; Rodov, V.; Kim, J.J.; Carmeli, S. Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J. Agric. Food Chem. 1992, 40, 1217–1221. [Google Scholar] [CrossRef]
- Rodov, V.; Ben-Yehoshua, S.; Kim, J.J.; Shapiro, B.; Ittah, Y. Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. J. Am. Soc. Hortic. Sci. 1992, 117, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Mercier, J.; Arul, J.; Julien, C. Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. Phytopathology 1993, 139, 17–25. [Google Scholar] [CrossRef]
- Mercier, J.; Roussel, D.; Charles, M.T.; Arul, J. Systemic and local responses associated with UV and pathogen-induced resistance to Botrytis cinereal in stored carrot. Phytopathology 2000, 90, 981–986. [Google Scholar] [CrossRef]
- De Capdeville, G.; Wilson, C.L.; Beer, S.V.; Aist, J.R. Alternative disease control agents induce resistance to blue mold in harvested ‘Red Delicious’apple fruit. Phytopathology 2002, 92, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Marquenie, D.; Michiels, C.; Geeraerd, A.; Schenk, A.; Soontjens, C.; Van Impe, J.; Nicolai, B. Using survival analysis to investigate the effect of UV–C and heat treatment on storage rot of strawberry and sweet cherry. Int. J. Food Microbiol. 2002, 73, 187–196. [Google Scholar] [CrossRef]
- Marquenie, D.; Geeraerd, A.H.; Lammertyn, J.; Soontjens, C.; Van Impe, J.F.; Michiels, C.W.; Nicolai, B.M. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int. J. Food Microbiol. 2003, 85, 185–196. [Google Scholar] [CrossRef]
- Marquenie, D.; Michiels, C.W.; Van Impe, J.F.; Schrevens, E.; Nicolai, B.M. Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biol. Technol. 2003, 28, 455–461. [Google Scholar] [CrossRef]
- Lammertyn, J.; De Ketelaere, B.; Marquenie, D.; Molenberghs, G.; Nicolai, B.M. Mixed models for multicategorical repeated response: Modeling the time effect of physical treatments on strawberry sepal quality. Postharvest Biol. Technol. 2003, 30, 195–207. [Google Scholar] [CrossRef]
- Kinay, P.; Yildiz, F.; Sen, F.; Yildiz, M.; Karacali, I. Integration of pre- and postharvest treatments to minimize Penicillium decay of Satsuma mandarins. Postharvest Biol. Technol. 2005, 37, 31–36. [Google Scholar] [CrossRef]
- Artes, F.; Conesa, A.; Lopez-Rubira, V.; Artes-Hernandez, F. UV–C treatments for improving microbial quality in whole and minimally processed bell peppers. In The Use of UV as a Postharvest Treatment: Status and Prospects, Proceedings of the International Conference on Quality Management of Fresh Cut Produce, Bangkok, Thailand, 6–8 August 2007; Ben-Yehoshua, S., D’Hallewin, G., Erkan, M., Rodov, V., Lagunas, M., Eds.; ISHSS: Leuven, Belgium, 2006; pp. 12–17. [Google Scholar]
- Gonzalez-Aguilar, G.A.; Wang, C.Y.; Buta, J.G.; Krizek, D.T. Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘Tommy Atkins’ mangoes. Int. J. Food Sci. Technol. 2001, 36, 767–773. [Google Scholar] [CrossRef]
- Gonzalez-Aguilar, G.A.; Zavaleta-Gatica, R.; Tiznado-Hernandez, M.E. Improving postharvest quality of mango ’Haden’ by UV-C treatment. Postharvest Biol. Technol. 2007, 45, 108–116. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Howard, L. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biol. Technol. 2008, 47, 280–285. [Google Scholar] [CrossRef]
- Romanazzi, G.; Mlikota Gabler, F.; Smilanick, J.L. Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis. 2006, 90, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Khademi, O.; Zamani, Z.; Poor Ahmadi, E.; Kalantari, S. Effect of UV-C radiation on postharvest physiology of persimmon fruit (Diospyros kaki Thunb.) cv. ’Karaj’ during storage at cold temperature. Int. Food Res. J. 2013, 20, 247–253. [Google Scholar]
- Pristijono, P.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V.; Stathopoulos, C.E.; Golding, J.B. Effect of UV-C irradiation on sprouting of potatoes in storage. In Proceedings of the VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues, Cartagena, Spain, 21–24 June 2016; pp. 475–478. [Google Scholar]
- Rocha, A.B.; Honório, S.L.; Messias, C.L.; Otón, M.; Gómez, P.A. Effect of UV-C radiation and fluorescent light to control postharvest soft rot in potato seed tubers. Sci. Hortic. 2015, 181, 174–181. [Google Scholar] [CrossRef]
- Stevens, C.; Khan, V.A.; Lu, J.Y.; Wilson, C.L.; Chalutz, E.; Droby, S.; Kabwe, M.K.; Haung, Z.; Adeyeye, O.; Pusey, L.P.; et al. Induced resistance of sweet potato to Fusarium root rot by UV-C hormesis. Crop Prot. 1999, 18, 463–470. [Google Scholar] [CrossRef]
- Clasen, B.; Stoddard, T.; Luo, S.; Demorest, Z.; Li, J.; Cedrone, F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant. Biotechnol. J. 2016, 14, 169–176. [Google Scholar] [CrossRef]
- Elmore, E.; Briddon, A.; Dodson, T.; Muttucumaru, N.; Halford, G.; Mottram, S. Acrylamide in potato crisps prepared from 20 UK-grown varieties: Effects of variety and tuber storage time. Food Chem. 2016, 182, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardigan, D.; Hirsch, N.; Manrique-Carpintero, A. The contribution of the Solanaceae coordinated agricultural project to potato breeding. Potato Res. 2014, 57, 215–224. [Google Scholar] [CrossRef]
- El-Awady Aml, A.; Moghazy, M.; Gouda, A.; Elshatoury, A. Inhibition of sprout growth and increase storability of processing potato by antisprouting agent. Trends Hortic. Res. 2014, 4, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Castronuovo, D.; Tataranni, G.; Lovelli, S.; Candido, V.; Sofo, A.; Scopa, A. UV-C irradiation effects on young tomato plants: Preliminary results. Pak. J. Bot. 2014, 46, 945–949. [Google Scholar]
- Katerova, Z.; Ivanov, S.; Prinsen, E.; Van Onckelen, H.; Alexieva, V.; Azmi, A. Low doses of ultraviolet-B or ultraviolet-C radiation affect ACC, ABA and IAA levels in young pea plants. Biol. Plant. 2009, 53, 365–368. [Google Scholar] [CrossRef]
- Hassan, H.; Abd El-Rahman, A.; Liela, A. Sprouting suppression and quality attributes of potato tubers as affected by post-harvest UV-C treatment under cold storage. Int. J. Adv. Res. 2016, 4, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Pietruszewski, S.; Martínez, E. Magnetic field as a method of improving the quality of sowing material. Int. Agrophysics 2015, 29, 377–389. [Google Scholar] [CrossRef]
- Kasyanov, G.; Syazin, I.; Grachev, A.; Davidenko, T.; Vazhenin, E. Features of usage of electromagnetic field of extremely low frequency for the storage of agricultural products. J. Electromagn. Anal. Appl. 2013, 5, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Koutchma, T.; Warriner, K.; Zhou, T. Reduction of Patulin in Apple Juice Products by UV Light of Different Wavelengths in the UVC Range. J. Food Prot. 2014, 77, 963–967. [Google Scholar] [CrossRef]
- Falguera, V.; Pagán, J.; Ibarz, A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. Food Sci. Technol. 2011, 44, 115–119. [Google Scholar] [CrossRef]
- Jakubowski, T. Use of UV-C radiation for reducing storage losses of potato tubers. Bangladesh J. Bot. 2018, 47, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Charles, M.T.; Mercier, J.; Makhlouf, J.; Arul, J. Physiological basis of UV-C-induced resistance to Botrytis cinerea in tomato fruit: I. Role of pre-and post-challenge accumulation of the phytoalexin-rishitin. Postharvest Biol. Technol. 2008, 47, 10–20. [Google Scholar] [CrossRef]
- Charles, M.T.; Makhlouf, J.; Arul, J. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. Postharvest Biol. Technol. 2008, 47, 21–26. [Google Scholar] [CrossRef]
- Tweddell, R.J.; Boulanger, R.; Arul, J. Effect of chlorine atmospheres on sprouting and development of dry rot, soft rot and silver scurf on potato tubers. Postharvest Biol. Technol. 2003, 28, 445–454. [Google Scholar] [CrossRef]
- Onik, J.; Xie, Y.; Duan, Y.; Hu, X.; Wang, Z.; Lin, Q. UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage. PLoS ONE 2019, 14, e0215472. [Google Scholar] [CrossRef]
- Wu, X.; Guan, W.; Yan, R.; Lei, J.; Xu, L.; Wang, Z. Effects of UV-C on antioxidant activity, total phenolics and main phenolic compounds of the melanin biosynthesis pathway in different tissues of button mushroom. Postharvest Biol. Technol. 2016, 118, 51–58. [Google Scholar] [CrossRef]
- Najeeb, U.; Xu, Z.; Ahmed, M.; Rasheed, G.; Jilani, M.; Naeem, W.; Shen, W. Ultraviolet-C mediated physiological and ultrastructural alterations in Juncus effuses L. shoots. Acta Physiol. Plant. 2011, 33, 481–488. [Google Scholar] [CrossRef]
- Cools, K.; Alamar, M.; Terry, L. Controlling sprouting in potato tubers using ultraviolet-C irradiance. Postharvest Biol. Technol. 2014, 98, 106–114. [Google Scholar] [CrossRef]
- Kowalski, W. Ultraviolet Germicidal Radiation Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 38–90. ISBN 978-3-642-01998-2. [Google Scholar]
- Bhattacharjee, C.; Sharan, R. UV-C radiation induced conformational relaxation of pMTa4 DNA in Escherichia coli may be the cause of single strand breaks. Int. J. Radiat. Biol. 2005, 81, 919–927. [Google Scholar] [CrossRef]
- Schreier, W.; Schrader, T.; Koller, F.; Gilch, P.; Crespo-Hernandez, C.; Swaminathan, V.; Carell, T.; Zinth, W.; Kohler, B. Thymine dimerization in DNA is an ultrafast photoreaction. Science 2007, 315, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Quek, P.; Hu, J. Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. J. Ind. Microbiol. Biotechnol. 2008, 35, 533–541. [Google Scholar] [CrossRef] [PubMed]
Qualitive Predictor and Interaction | Sum of Square | Degrees of Freedom | Mean Square | Value of F-Snedecor test | Probability Test |
---|---|---|---|---|---|
Free Word | 38815.53 | 1 | 38815.53 | 5391.355 | 0.0000 |
Year {1} | 4.98 | 2 | 2.49 | 0.346 | 0.7078 |
Variety {2} | 22.46 | 2 | 11.23 | 1.560 | 0.2104 |
UV-C exposition {3} | 49.45 | 1 | 49.45 | 6.868 | 0.0089 |
{1}x{2} | 55.41 | 4 | 13.85 | 1.924 | 0.1039 |
{1}x{3} | 11.46 | 2 | 5.73 | 0.796 | 0.4513 |
{2}x{3} | 12.18 | 2 | 6.09 | 0.846 | 0.4293 |
{1}x{2}x{3} | 37.48 | 4 | 9.37 | 1.301 | 0.2673 |
Error | 11533.74 | 1602 | 7.20 | ||
Time {4} | 8273.54 | 3 | 2757.85 | 4498.591 | 0.0000 |
{4}x{1} | 0.80 | 6 | 0.13 | 0.217 | 0.9717 |
{4}x{2} | 6.28 | 6 | 1.05 | 1.706 | 0.1152 |
{4}x{3} | 23.42 | 3 | 7.81 | 12.732 | 0.0000 |
{4}x{1}x{2} | 12.45 | 12 | 1.04 | 1.692 | 0.0618 |
{4}x{1}x{2}x{3} | 1.83 | 6 | 0.31 | 0.498 | 0.8102 |
{4}x{2}x{3} | 8.57 | 6 | 1.43 | 2.329 | 0.0301 |
{4}x{1}x{2}x{3} | 13.60 | 12 | 1.13 | 1.849 | 0.0357 |
Error | 2946.30 | 4806 | 0.61 |
Variety | Exposition | Time | Loses (g·g−1) | Homogeneous Groups | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Fianna | UV-C | I | 0.887 | **** | |||||
Jelly | UV-C | I | 0.927 | **** | |||||
Fianna | control | I | 0.948 | **** | |||||
Syrena | UV-C | I | 0.961 | **** | |||||
Jelly | control | I | 0.977 | **** | |||||
Syrena | control | I | 1.012 | **** | |||||
Fianna | UV-C | II | 1.785 | **** | |||||
Jelly | UV-C | II | 1.849 | **** | |||||
Fianna | control | II | 1.964 | **** | |||||
Jelly | control | II | 1.974 | **** | |||||
Syrena | UV-C | II | 1.991 | **** | |||||
Syrena | control | II | 1.992 | **** | |||||
Fianna | UV-C | III | 2.741 | **** | |||||
Jelly | UV-C | III | 2.804 | **** | |||||
Fianna | control | III | 2.863 | **** | |||||
Syrena | UV-C | III | 2.968 | **** | |||||
Syrena | control | III | 2.998 | **** | |||||
Jelly | control | III | 3.172 | **** | |||||
Fianna | UV-C | IV | 3.649 | **** | |||||
Jelly | UV-C | IV | 3.787 | **** | **** | ||||
Syrena | UV-C | IV | 3.971 | **** | **** | **** | |||
Fianna | control | IV | 4.088 | **** | **** | **** | |||
Syrena | control | IV | 4.120 | **** | **** | ||||
Jelly | control | IV | 4.308 | **** |
Qualitive Predictor and Interaction | Value of F-Snedecor Test | Probability Test |
---|---|---|
Free Word | 10787.16 | 0.0000 |
Year {1} | 0.22 | 0.9276 |
Variety {2} | 12.58 | 0.0000 |
UV-C exposition {3} | 10.11 | 0.0001 |
{1}x{2} | 1.43 | 0.1767 |
{1}x{3} | 1.72 | 0.1420 |
{2}x{3} | 5.20 | 0.0004 |
{1}x{2}x{3} | 1.82 | 0.0680 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowski, T.; Królczyk, J.B. Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage. Sustainability 2020, 12, 1048. https://doi.org/10.3390/su12031048
Jakubowski T, Królczyk JB. Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage. Sustainability. 2020; 12(3):1048. https://doi.org/10.3390/su12031048
Chicago/Turabian StyleJakubowski, Tomasz, and Jolanta B. Królczyk. 2020. "Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage" Sustainability 12, no. 3: 1048. https://doi.org/10.3390/su12031048
APA StyleJakubowski, T., & Królczyk, J. B. (2020). Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage. Sustainability, 12(3), 1048. https://doi.org/10.3390/su12031048