Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model
Abstract
:1. Introduction
1.1. Agricultural Sustainability Assessment
1.2. The Relevance of the Permanent Cropped Land in Spain
1.3. Conventional Farming Practices and Their Environmental Problems
2. Materials and Methods
2.1. Study Farm
2.2. Method of Sustainability Assessment
2.3. Data Collection
2.4. BPMs Implementation Assessment through Sustainability Indicators
3. Results
3.1. Basic Indicators Results
3.2. BMPs Implementation Data
4. Discussion
4.1. Analyses of the Scores Which Deal with Basic Criteria
4.1.1. Measures about the Economic Aspects of Sustainability
4.1.2. Measures about the Environmental Aspects of Sustainability
4.1.3. Measures about the Social Aspects of Sustainability
4.2. Analysis of the Criteria Sustainability Scores
4.3. BMPs Achievements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, J.W. Is agricultural sustainability a useful concept? Agric. Syst. 1996, 50, 117–143. [Google Scholar] [CrossRef]
- Lamastra, L.; Balderacchi, M.; Guardo, A.D.; Monchiero, M.; Trevisan, M. A novel fuzzy expert system to assess the sustainability of the viticulture at the wine-estate scale. Sci. Total Environ. 2016, 572, 724–733. [Google Scholar] [CrossRef]
- Bohanec, M.; Cortet, J.; Griffiths, B.; Znidarsic, M.; Debeljak, M.; Caul, S.; Thompson, J.; Krogh, P.H. A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality. Pedobiologia 2007, 51, 239–250. [Google Scholar] [CrossRef]
- Juwana, I.; Muttil, N.; Perera, B.J.C. Indicator-based water sustainability assessment-A review. Sci. Total Environ. 2012, 438, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Abbona, E.A.; Sarnadón, S.J.; Marasas, M.E.; Astier, M. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 2007, 119, 335–345. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C.; Menassieu, J. Agronomy for Sustainable Agriculture, A review. Agron. Sustain. Dev. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Brundtland, G.; Khalid, M.; Agnelli, S.; Saleh, A.A.; Chidzero, B.; Fadika, L.M.; Hauff, V.; Lung, I.; Shijun, M.; Botero, M.M.D.; et al. United Nations World Commission on Environment and Development. 1987. Brundtland Report. Our Common Future. Available online: https://en.wikisource.org/wiki/Brundtland_Report?linklisted=2812 (accessed on 30 November 2019).
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method- from the concept of agriculture sustainability to case studies of farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; De Paola, C. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Triviño-Tarradas, P.; Gomez-Ariza, M.R.; Basch, G.; Gonzalez-Sanchez, E.J. Sustainability Assessment of Annual and Permanent Crops: The INSPIA model. Sustainability 2019, 11, 738. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; García-Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE_A hierarchical framework for assessing sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Craheix, D.; Angevin, F.; Bergez, J.E.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Doré, T. MASC 2.0. un outil d’evaluation multicritère our estimer la contribution des systèmes de culture au développement durable. Innov. Agron 2012, 20, 35–48. [Google Scholar]
- Peano, C.; Tecco, N.; Dansero, E.; Girgenti, V.; Sottile, F. Evaluating the sustainability in complex agri-food systems: The SAEMETH framework. Sustainability 2015, 7, 6721–6741. [Google Scholar] [CrossRef] [Green Version]
- Meul, M.; Van Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Van Hauwermeire, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Bockstaller, C.; Girardin, P.; van der Werf, H.M.G. Use of agro-ecological indicators for the evaluation of farming systems. Eur. J. Agron. 1997, 7, 261–270. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges. 2017. Available online: http://www.fao.org/3/a-i6583e.pdf (accessed on 10 December 2019).
- Pardo-Calle, C.; Segovia-González, M.M.; Paneque-Macías, P.; Espino-Gonzalo, C. An approach to zoning in the wine growing regions of “Jerez-Xérez-Sherry” and “Manzanilla-Sanlúcar de Barrameda” (Cádiz, Spain). Span. J. Agric. Res. 2011, 9, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa-Rodríguez, A.; Parra-López, C.; Carmona-Torres, C.; Sayadi, S. Protected Designation of Origin in the Olive Growing Sector: Adoption Factors and Goodness of practices in Andalusia, Spain. New Medit. 2014, 13, 2–12. [Google Scholar]
- MAPAMA. Encuesta Sobre Superficies y Rendimientos de Cultivos. 2017. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2017sm_tcm30-455983.pdf (accessed on 27 November 2019).
- INE. 2009. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176851&menu=ultiDatos&idp=1254735727106 (accessed on 12 November 2019).
- MAPAMA b. 2017. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2017/default.aspx?parte=3&capitulo=13 (accessed on 12 November 2019).
- Consejería de Agricultura, Pesca y Desarrollo Rural. El sector del vino andaluz en cifras; Secretaria General de Agricultura y Alimentación, 2017; Consejería de Agricultura, Pesca y Desarrollo Rural. Available online: https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/17/11/El_sector_del_vino_andaluz_en_cifras_SEE.pdf (accessed on 21 November 2019).
- Consejería de Agricultura, Pesca y Desarrollo Rural. 2013. Available online: https://www.juntadeandalucia.es/export/drupaljda/Datos%20sector%20agrario%20y%20pesquero%202016-1.pdf (accessed on 20 November 2019).
- Consejería de Medio Ambiente y Ordenación del Territorio. 2011. Available online: http://www.juntadeandalucia.es/ (accessed on 21 November 2019).
- Martinez-Raya, A.; Francia, J.R.; Martinez-Vilela, A. Introducción a la agricultura de conservación en olivar. Evaluación del comportamiento de los sistemas de manejo de suelo; Cubiertas vegetales en olivar, Ed.; Junta de Andalucía, Consejería de Agricultura y Pesca: Sevilla, Spain, 2007; Available online: https://www.juntadeandalucia.es/export/drupaljda/1337161293CUBIERTAS_VEGETALES_9-07_mod_por_JMD.pdf (accessed on 31 January 2020).
- Sastre, B.; Marquez, M.J.; García-Díaz, A.; Bienes, R. Three years of management with cover crops protecting sloping olive groves soils, carbon and water effects on gypsiferous soil. Catena 2018, 171, 115–124. [Google Scholar] [CrossRef]
- COUNCIL REGULATION (EC) No 1257/1999 of 17 May 1999 on Support for Rural Development from the European Agricultural Guidance and Guarantee Fund (EAGGF) and Amending and Repealing Certain Regulations. Available online: https://op.europa.eu/en/publication-detail/-/publication/c70dfc8c-6243-4b1a-817e-4673042024c4 (accessed on 10 October 2019).
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–41. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Kassam, A.; Basch, G.; Streit, B.; Holgado-Cabrera, A.; Triviño-Tarradas, P. Conservation Agriculture and its contribution to the achievement of agri-environmental and economic challenges in Europe. AIMS Agric. Food 2016, 1, 387–408. [Google Scholar] [CrossRef]
- MAPAMA. Encuesta Sobre Superficies y Rendimientos de Cultivos. 2011. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletinweb2011_corregido_tcm30-122319.pdf (accessed on 29 November 2019).
- González-Sánchez, E.J.; Veroz-González, O.; Blanco-Roldán, G.L.; Marquez-Garcia, F.; Carbonell-Bojollo, R. A renewed view of Conservation Agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Ibañez, S.; Pérez, J.L.; Peregrina, F.; García-Escudero, E. Utilización de cubiertas vegetales en viñedos de la DOP. Rioja (España). Le Bulletin de l’OIV 2011, 84, 347–360. [Google Scholar]
- FAO. 2009. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 19 November 2019).
- FAO. Safe and Growth. A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production. 2011. Available online: http://www.fao.org/3/a-i2215e.pdf (accessed on 22 November 2019).
- Kassam, A.; Basch, G.; Friedrich, T.; Gonzalez, E.; Triviño, P.; Mkomwa, S. Mobilizing greater crop and land potentials sustainably. Hung. Geogr. Bull. 2017, 66, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salvia, R.; Simone, R.; Salvati, L.; Quaranta, G. Soil Conservation Practices and Stakeholder’s Participation in Research Projects—Empirical Evidence from Southern Italy. Agriculture 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- MAPAMA. Encuesta Sobre Superficies y Rendimientos de Cultivos. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/comentariosespana2019_tcm30-522390.pdf (accessed on 30 December 2019).
- BOJA. Orden de 3 de mayo de 2016 (BOJA 89 de 12 de mayo 2016), por la que se emite decisión favorable en relación a la solicitud de aprobación de una modificación del pliego de condiciones de la denominación de origen protegida ‘Montilla-Moriles’. 2016. Available online: https://www.juntadeandalucia.es/boja/2016/89/23 (accessed on 31 January 2020).
- Consejo Regulador Montilla-Moriles. 2016. Available online: https://www.montillamoriles.es/la-denominacion/viticultura/el-clima.html (accessed on 21 January 2020).
- AEMET. Agencia Estatal de Meteorología de España. 2019. Available online: https://datosclima.es/Aemethistorico/Lluviasol.php (accessed on 21 January 2020).
- FAO. The Sustainable Development Agenda. 2016. Available online: www.fao.org/sustainable-development-goals/indicators/en/ (accessed on 22 November 2019).
- Marchand, F.; Debruyne, L.; Triste, L.; Gerrard, C.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19, 46. [Google Scholar] [CrossRef] [Green Version]
- INSPIA. 2013. Available online: http://www.inspia-europe.eu/ (accessed on 29 November 2019).
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability Assessment in Wine-Grape Growing in the New World: Economic, Environmental, and Social Indicators for agricultural Businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Zhu, W.; Wang, H.; Cheng, X. Analysis and design of agricultural sustainability indicators systems. Agric. Sci. China 2007, 6, 475–486. [Google Scholar] [CrossRef]
- Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0128&rid=8 (accessed on 21 November 2019).
- SigPac Junta de Andalucía. 2019. Available online: http://ws128.juntadeandalucia.es/agriculturaypesca/sigpac/index.xhtml (accessed on 11 November 2019).
- Pastor, M.; Castro, J.; Humanes, M.D.; Muñoz, J. Sistemas de Manejo de Suelo en Olivar de Andalucía. Edafología 2001, 8, 75–98. [Google Scholar]
- Basch, G.; Kassam, A.; González-Sanchez, E.J.; Streit, B. Making Sustainable Agriculture Real in CAP 2020: The Role of Conservation Agriculture; ECAF: Brussels, Belgium, 2012; Available online: http://www.agricarbon.eu/fichas_publicaciones/ca%20and%20cap%202020.pdf (accessed on 31 January 2020).
- Topps Prowadis. 2017. Available online: http://www.topps-life.org/uploads/8/0/0/3/8003583/runoff_field_manual_eng.pdf (accessed on 26 November 2019).
- Fraga, H.; Santos, J.A. Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agric. Syst. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- DeVetter, L.W.; Dilley, C.A.; Nonnecke, G.R. Mulches Reduce Weeds, Maintain Yield, and Promote Soil Quality in a Continental-Climate Vineyard. Am. J. Enol. Vitic. 2015, 6, 54–64. [Google Scholar] [CrossRef]
- Pou, A.; Gulias, J.; Moreno, M.; Tomas, M.; Medrano, H.; Cifre, J. Cover cropping in “Vitis vinifera” L. cv. Manto negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. J. Int. Des Sci. De La Vigne Et Du Vin. 2011, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Pérez, P.; Lucena-Molina, A.I.; Gonzalez-Caballero, V.; Lasheras-Ocaña, J.; López-Infante, I. Efectos del uso de una cubierta vegetal en el rendimiento, vigor y calidad de la uva. SERVIFAPA. Junta de Andalucía. Instituto de Investigación y Formación Agraria y Pesquera. Consejería de Agricultura, Pesca y Desarrollo Rural. 2011. Available online: http://www.sech.info/ACTAS/Acta%20n%C2%BA%2060.%20XIII%20Congreso%20Nacional%20de%20Ciencias%20Hort%C3%ADcolas/Viticultura/Efectos%20del%20uso%20de%20una%20cubierta%20vegetal%20en%20el%20rendimiento,%20vigor%20y%20calidad%20de%20la%20uva.pdf (accessed on 12 November 2019).
- Organisation for Economic Cooperation and Development (OECD). Environmental Indicators for Agriculture, Methods and Results; OECD: Paris, France, 2001; Volume 3, Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/1916629.pdf (accessed on 31 January 2020).
- Perego, A.; Rocca, A.; Cattivelli, V.; Tabaglio, V.; Fiorini, A.; Barbieri, S.; Schillaci, C.; Chiodini, M.E.; Brenna, S.; Acutis, M. Agro-environmental aspects of conservation agricultura compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Norther Italy). Agric. Syst. 2019, 168, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AEAC.SV. Asociación Española de Agricultura de Conservación. Suelos Vivos. 2017. Available online: http://www.agriculturadeconservacion.org/index.php/descargas/fichas-tecnicas (accessed on 1 December 2019).
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Moreno-García, M.; Kassam, A.; Holgado-Cabrera, A.; Triviño-Tarradas, P.; Carbonell-Bojollo, R.; Pisante, M.; Veroz-González, O.; Basch, G. Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe. ECAF, Brussels. 2017. Available online: http://www.ecaf.org/inaction/news/item/60-a-major-new-research-study-in-favour-of-conservation-agriculture (accessed on 15 November 2019).
- Rodrigo-Comino, J.; Senciales, J.M.; Ramos, M.C.; Martínez-Casanovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Ruiz-Sinoga, J.D. Understandib soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Colmenero, R.; Bienes, R.; Eldridge, D.J.; Marquez, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Colnenne-David, C.; Grandeau, G.; Jeuffroy, M.H.; Dore, T. Ambitious environmental and economic goals for the future of agriculture are unequally achieved by innovative cropping systems. Field Crops Res. 2017, 210, 114–128. [Google Scholar] [CrossRef]
- Lafond, J.; Pageau, D. Economically optimal nitrogen rate and soil nitrate after canola harvest. Can. J. Plant Sci. 2008, 88, 1035–1042. [Google Scholar] [CrossRef]
- Consejería de Agricultura y Pesca. Suelo, Riego, Nutrición y Medio Ambiente del olivar. Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica. 2004. Available online: https://www.juntadeandalucia.es/export/drupaljda/1337165053SUELOx_RIEGO_Y_NUTRICION_OLIVAR.pdf (accessed on 2 December 2019).
- Lopez-Bellido, P.J.; Lopez-Bellido, L.; Fernandez-Garcia, P.; Muñoz-Romero, V.; Lopez-Bellido, F.J. Assessment of carbon sequestration and the carbon footprint in olive groves in Southern Spain. Carbon Manag. 2016, 7, 161–170. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Ordoñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean Woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Melero, S.; López-Bellido, R.J.; López-Bellido, L.; Muñoz-Romero, V.; Moreno, F.; Murillo, J.M. Long-tern effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil Tillage Res. 2011, 114, 97–107. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.I.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on North China plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- García-Díaz, A.; Marquéz, M.J.; Sastre, B.; Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 2018, 321, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trigo–Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, L.; Díaz-Losada, E.; Mirás-Avalos, J. Influence of cover crops treatments on the performance of a vineyard in a humid region. Span. J. Agric. Res. 2015, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E.; Moonen, A. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Brown, C.; Eales, J.; Eggers, S.; Josefsson, J.; Kronvang, B.; Randall, N.P.; Uusi-Kämppä, J. The multifunctional roles of vegetated strips around and within agricultural fields. Environ. Evid. 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Helps, M.B. Field margins-an agricultural perspective. In Field Margins: Integrating Agriculture and Conservation; Boatman, N.D., Ed.; BCPC Monograph No 58; British Crop Protection Council: Farnham, UK, 1997; pp. 21–30. [Google Scholar]
- Carr, S.N.; Bell, M. Practical Conservation: Boundary Habitats; Hodder and Stoughton: London, UK, 1991; 127p. [Google Scholar]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for Holistic Sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 1–13. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture Website. Food and Agriculture Organization of the United Nations. 2015. Available online: http://www.fao.org./ag/ca/index.html (accessed on 7 December 2019).
- Jordan, V.W.L. The development of integrated arable production systems to meet potential economic and environmental requirements. Outlook Agric. 1998, 27, 145–151. [Google Scholar] [CrossRef]
Doña Mencía (25 km) | Córdoba Aeropuerto (35 km) | |
---|---|---|
Average annual precipitation (mm) (20 years) | 500 | 566 |
Maximum temperature (°C) | 41.9 (10/08/2012) | 46.9 (13/07/2017) |
Minimum temperature (°C) | −9.3 (27/01/2015) | −8.2 (28/01/2005) |
Average annual precipitation * (2013/2014) (mm) | 393.2 | 465.3 |
Average annual precipitation * (2014/2015) (mm) | 375.4 | 387.1 |
Average annual precipitation * (2015/2016) (mm) | 446.0 | 514.8 |
Average annual precipitation * (2016/2017) (mm) | 364.6 | 463.7 |
Average annual precipitation * (2017/2018) (mm) | 662.3 | 529.9 |
No. | INSPIA Basic Indicator | Units | 2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 |
---|---|---|---|---|---|---|---|
1 | Net income per ha | €/ha | 2114.00 | 1890.00 | 1951.00 | 2156.00 | 1915.00 |
2 | Net income per annual work unit (AWU) | €/AWU | 91,219.00 | 83,362.00 | 86,236.00 | 98,277.00 | 95,167.00 |
3 | Production cost per ha | €/ha | 1672.00 | 1623.00 | 1628.00 | 1653.00 | 1605.00 |
4 | Yield | - | 85.40 | 86.50 | 86.80 | 108.70 | 86.20 |
5 | N Productivity | kg/kg | 111.03 | 113.87 | 114.35 | 113.91 | 113.08 |
6 | P Productivity | kg/kg | 95.60 | 96.32 | 96.56 | 95.60 | 65.00 |
7 | Irrigation water application | m3/ha | 750.00 | 750.00 | 750.00 | 750.00 | 750.00 |
8 | Water productivity | kg/m3 | 13.33 | 14.00 | 14.09 | 14.15 | 12.00 |
9 | Energy balance | MJ/ha | 3311.00 | 3313.00 | 3283.00 | 3321.00 | 3150.00 |
10 | Energy efficiency | MJ/MJ | 3.30 | 3.30 | 3.40 | 3.30 | 3.20 |
11 | Energy productivity | kg/MJ | 9.74 | 9.83 | 9.87 | 10.10 | 9.60 |
12 | Working hours per ha | h/ha | 15.82 | 15.79 | 15.78 | 13.81 | 17.67 |
13 | Satisfaction index | - | 5.50 | 5.50 | 8.50 | 10.00 | 4.75 |
14 | Farmers’ training levels | - | 2.50 | 2.50 | 3.00 | 6.00 | 6.00 |
15 | Risk of abandonment of agricultural activity | - | 0 | 0 | 0 | 0 | 0 |
16 | Soil tillage index | - | 14.00 | 10.01 | 8.20 | 8.20 | 14.00 |
17 | Soil cover rate | - | 0.83 | 0.84 | 0.84 | 0.84 | 0.38 |
18 | Soil erosion risk | - | 0.19 | 0.19 | 0.18 | 0.17 | 0.28 |
19 | Organic matter | % | 0.48 | 0.48 | 0.52 | 0.80 | 0.77 |
20 | Crop diversity | - | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 |
21 | Crop rotations | - | 0 | 0 | 0 | 0 | 0 |
22 | N Balance | kg N/ha | −7.10 | −6.20 | −6.02 | −6.42 | −3.32 |
23 | N Efficiency | kg/kg | 1.16 | 1.20 | 1.20 | 1.20 | 0.85 |
24 | P Balance | kg P/ha | 7.60 | 7.75 | 7.79 | 7.69 | 7.60 |
25 | P Efficiency | kg/kg | 1.43 | 1.44 | 1.45 | 1.43 | 1.33 |
26 | GHGs Balance | Kg CO2eq/ha | 1677.00 | 1677.00 | 1671.00 | 1678.00 | 2735.00 |
27 | GHGs per kg | kg CO2eq/kg | 0.14 | 0.14 | 0.14 | 0.14 | 0.23 |
28 | Natural area | % | 1.63 | 1.63 | 1.63 | 1.63 | 1.63 |
29 | Biodiversity structures | - | 1.00 | 1.00 | 1.33 | 4.00 | 3.33 |
30 | Buffers and security areas | % | 0.36 | 0.36 | 0.36 | 0.36 | 0.30 |
31 | Plant Protection Product (PPP) management | - | 4.00 | 4.00 | 4.00 | 21.00 | 21.00 |
BMP No. | Name of the BMP |
---|---|
1 | Use permanent soil cover (green cover or residue cover) |
2 | Use of minimum soil disturbance practices |
3 | Use of groundcovers (for permanent crops) |
4 | Perform suitable crop rotation/diversification |
5 | Perform farming operations following the contour lines |
6 | Fertilize according to soil deficiencies and crop needs |
7 | Plant Protection Product (PPP, i.e., pesticide) use according to Integrated Pest Management Strategy [46] |
8 | Use of modern technologies for applications (Precision Agriculture) |
9 | Optimise irrigation timing and rate |
10 | Optimised use of pesticides (correct dose and appropriate product) |
11 | Implementation of field margins and buffer strips with diversity of plant species |
12 | Establish and maintain riparian buffers |
13 | Build retention structures across slopes to reduce the length of plots (fascines, vegetative buffers) |
14 | Point source prevention of PPP (pesticide) pollution on the farm |
15 | Perform optimised waste management |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triviño-Tarradas, P.; Carranza-Cañadas, P.; Mesas-Carrascosa, F.-J.; Gonzalez-Sanchez, E.J. Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model. Sustainability 2020, 12, 1090. https://doi.org/10.3390/su12031090
Triviño-Tarradas P, Carranza-Cañadas P, Mesas-Carrascosa F-J, Gonzalez-Sanchez EJ. Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model. Sustainability. 2020; 12(3):1090. https://doi.org/10.3390/su12031090
Chicago/Turabian StyleTriviño-Tarradas, Paula, Pilar Carranza-Cañadas, Francisco-Javier Mesas-Carrascosa, and Emilio J. Gonzalez-Sanchez. 2020. "Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model" Sustainability 12, no. 3: 1090. https://doi.org/10.3390/su12031090
APA StyleTriviño-Tarradas, P., Carranza-Cañadas, P., Mesas-Carrascosa, F. -J., & Gonzalez-Sanchez, E. J. (2020). Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model. Sustainability, 12(3), 1090. https://doi.org/10.3390/su12031090