Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy
Abstract
:1. Introduction
2. Portofino Case Study Site
2.1. The RECONECT Project Case Studies
2.2. Portofino Natural Regional Park
2.3. Portofino’s Climate, Geology, and Geomorphology
2.4. Biotic Components in the Portofino Natural Regional Park
- (1)
- Coast vegetation, covering the cliffs overlooking the Ligurian Sea, which is resistant to salinity and wind. Typical examples are marine fennel (Chrithmummaritimum) and statice cordata (Limonium cordatum). Other small plants are the spiny Euphorbia (Euphorbia spinosa) and specimens of the genus Sedum (for example, S. album), covering the most exposed maritime slopes in the sun. Instead, ivy (Ivy helix), Polipodio vulgare (Polypodiumvulgare), and Sassifraga spatolata (Saxifragacochlearis) are present on the more humid and shaded rocks.
- (2)
- Shrubs, covering maritime slopes, including broom (Spartiumjunceum), spiny broom (Calycotomespinosa), Cisto female (Cistus salvifolius), thyme (Thymus vulgaris), and Euphorbia arborea (Euphorbia dendroides).
- (3)
- Grassland, dominated by Ampelodesmos mauritanicus.
- (4)
- Evergreen species, such as myrtle (Myrtuscommunis), lentisco (Pistacialentiscus), alaterno (Rhamnusalaternus), terebinth (Pistaciaterebinthus), fillirea (Phillyrealatifolia), strawberry tree (Arbutus unedo), and madder (Rubia peregrine).
- (5)
- Pine grove, covering the Portofino promontory. Three main species can be found. In particular, domestic pine (Pinuspinea), maritime pine (Pinuspinaster), and pinewood (Pinushalepensis).
- (6)
- Holm oak (Quercus ilex) wood.
- (7)
- Chestnut (Castanea sativa) wood.
- (8)
- Mixed mesophilic forest, covering the north-oriented slopes. Its main species are black hornbeam (Ostryacarpinifolia) combined with chestnut (Castanea sativa), laburnum (Laburnum anagyroides), and other trees.
- (9)
- Riparian vegetation on the stream banks and near springs (e.g., Valle dei Mulini area). Among the species are black elderberry (Sambucusnigra), black alder (Alnusglutinosa), and numerous ferns.
3. Hydro-Meteorological Hazards and Vulnerability
3.1. Natural Hazards in the Portofino Promontory
3.2. Selected Locations and Hazards for the RECONECT Project
4. Selection of Nature-Based Solutions
4.1. Foreseen Solutions in the Case Study Area of the Portofino Natural Regional Park
4.2. Hydro-Meteorological Monitoring Activities
4.3. NBS Performance Indicators
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Razvan Nita, M.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.; Lopez-Gunn, E. Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Hammond, M.; Golub, D.; Hirunsalee, S.; Weesakul, S.; Meesuk, V.; Medina, N.; Sanchez, A.; Kumara, S.; Abbott, M. Holistic approach to flood risk assessment in areas with cultural heritage: A practical application in Ayutthaya, Thailand. Nat. Hazards 2016, 81, 589–616. [Google Scholar] [CrossRef] [Green Version]
- Boukalova, Z.; Tesitel, J.; Das Gurung, B. Constructed wetlands and their implementation on private and public land in Kathmandu valley, Nepal. Ecol. Environ. 2019, 229, 1–8. [Google Scholar]
- Klijn, F.; Asselman, N.; Wagenaar, D. Room for Rivers: Risk Reduction by Enhancing the Flood Conveyance Capacity of The Netherlands’ Large Rivers. Geosciences 2018, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.F.; van Buuren, M.W. Implementing Room for the River: Narratives of success and failure in Kampen, The Netherlands. Int. Rev. Adm. Sci. 2011, 77, 779–802. [Google Scholar] [CrossRef]
- Chun, R.J. Achieving Successful River Restoration in Dense Urban Areas: Lessons from Taiwan. Sustainability 2016, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
- PHUSICOS EU Project. Available online: https://phusicos.eu/ (accessed on 13 November 2019).
- OPERANDUM EU Project. Available online: https://www.operandum-project.eu/ (accessed on 13 November 2019).
- Strahler, A.N. Physical Geography. Visual Aids Manual; John Wiley & Sons: New York, NY, USA, 1951; Volume 32, p. 13. [Google Scholar]
- Faccini, F.; Piccazzo, M.; Robbiano, A.; Roccati, A. Applied Geomorphological Map of the Portofino Municipal territory (Italy). J. Maps 2008, 4, 451–462. [Google Scholar] [CrossRef]
- Faccini, F.; Gabellieri, N.; Paliaga, G.; Piana, P.; Angelini, S.; Coratza, P. Geoheritage map of the Portofino Natural Park (Italy). J. Maps 2018, 14, 87–96. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Piccazzo, M. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy). Nat. Hazard Earth Syst. Sci. 2006, 6, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W. Das Geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; Volume 1, pp. 1–44. (In German) [Google Scholar]
- Sacchini, A.; Ferraris, F.; Faccini, F.; Firpo, M. Environmental climatic maps of Liguria. J. Maps 2012, 8, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Acquaotta, F.; Faccini, F.; Fratianni, S.; Paliaga, G.; Sacchini, A.; Vilìmek, V. Increased flash flooding in Genoa Metropolitan Area: A combination of climate changes and soil consumption? Meteorol. Atmos. Phys. 2019, 131, 1099–1110. [Google Scholar] [CrossRef]
- Giammarino, S.; Messiga, B. Clasti di meta-ofioliti a paragenesi di alta pressione nel Conglomerato di Portofino: Implicazioni paleogeografiche e strutturali. Ofioliti 1979, 4, 25–41. (In Italian) [Google Scholar]
- Corsi, B.; Elter, F.M.; Giammarino, S. Structural fabric of the Antola Unit (Riviera di Levante, Italy) and implications for its alpine versus Apennine origin. Ofioliti 2001, 26, 1–8. [Google Scholar]
- Bonaria, V.; Faccini, F.; Galiano, I.C.; Sacchini, A. Hydrogeology of conglomerate fractured-rock aquifers: An example from the Portofino’s Promontory (Italy). Rend. Online Soc. Geol. Ital. 2016, 41, 22–25. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Robbiano, A.; Terranova, R. Geomorphological hazard and monitoring activity along the western rocky coast of the Portofino Promontory (Italy). Quat. Int. 2007, 171, 131–142. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Arnaèz, J.; Lana-Renault, N.; Lasanta, T.; Ruiz Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Soldati, M. Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 2015, 12, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Paliaga, G.; Giostrella, P.; Faccini, F. Terraced Landscape as Cultural and Environmental Heritage at Risk: An Example from Portofino Park (Italy). ANNALES Ser. Hist. Sociol. 2016, 2, 513–522. [Google Scholar] [CrossRef]
- Gestro, C. Education to protection of biodiversity in Liguria. Ital. Bot. 2004, 36, 537–539. [Google Scholar]
- Balletti, F.; Soppa, S. The landscapes of the Portofino natural regional Park. In Nature Policies and Landscape Policies; Springer: Cham, Switzerland, 2015; pp. 415–422. [Google Scholar]
- Kron, W. Flood Risk = Hazard • Values • Vulnerability. Water Inter. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Paliaga, G.; Faccini, F.; Luino, F.; Turconi, L. A spatial multicriteria prioritizing approach for geohydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Nat. Hazards Earth Syst. Sci. 2019, 19, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Turconi, L.; Luino, F.; Gussoni, M.; Faccini, F.; Giardino, M.; Casazza, M. Intrinsic Environmental Vulnerability as Shallow Landslide Susceptibility in Environmental Impact Assessment. Sustainability 2019, 11, 6285. [Google Scholar] [CrossRef] [Green Version]
- Paliaga, G.; Faccini, F.; Luino, F.; Turconi, L.; Bobrowsky, P. Geomorphic processes and risk related to a large landslide dam in a highly urbanized Mediterranean catchment (Genova, Italy). Geomorphology 2019, 327, 48–61. [Google Scholar] [CrossRef]
- Palladino, M.R.; Viero, A.; Turconi, L.; Brunetti, M.T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A.M.; Guzzetti, F. Rainfall thresholds for the activation of shallow landslides in the Italian Alps: The role of environmental conditioning factors. Geomorphology 2018, 303, 53–67. [Google Scholar] [CrossRef]
- Canuti, P.; Casagli, N.; Pellegrini, M.; Tosatti, G. Geo-hydrological hazards’. Anatomy of an Orogen, the Apennines and adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2001; pp. 513–532. [Google Scholar]
- Trigo, I.F.; Davies, T.D.; Bigg, G.R. Objective climatology of cyclones in the Mediterranean region. J. Clim. 1999, 12, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Luino, F.; Paliaga, G.; Roccati, A.; Sacchini, A.; Turconi, L.; Faccini, F. Anthropogenic changes in the alluvial plains of the Tyrrhenian Ligurian basins. Rend. Online Soc. Geol. Ital. 2019, 48, 10–16. [Google Scholar] [CrossRef]
- The AVI project of CNR-GNDCI. Available online: http://avi.gndci.cnr.it/ (accessed on 25 July 2019).
- Berri, P. Rapallo nei secoli; Edizioni Ipotesi: Liguria, Italy, 1979. [Google Scholar]
- Parodi, A.; Ferraris, L.; Gallus, W.; Maugeri, M.; Molini, L.; Siccardi, F.; Boni, G. Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: The San Fruttuoso case of 1915. Clim. Past. 2017, 13, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Ministero dei Lavori Pubblici. Annali Idrologici; Ministero dei Lavori Pubblici: Roma, Italy, 1934–2003. Available online: http://www.acq.isprambiente.it/annalipdf/ (accessed on 10 August 2019).
- Terranova, R. Squilibri geomorfologici e rischi sulla costa alta rocciosa occidentale del Promontorio di Portofino (Liguria Orientale). In Studi geografici e geologici in onore di S. Belloni; Università degli Studi di Milano e Milano Bicocca: Milano, Italy, 1999; pp. 595–607. (In Italian) [Google Scholar]
- Orlandi, A.; Pasi, F.; Onorato, L.F.; Gallino, S. An observational and numerical case study of a flash sea storm over the Gulf of Genoa. Adv. Sci. Res. 2008, 2, 107–112. [Google Scholar] [CrossRef]
- Pasi, F.; Orlandi, A.; Onorato, L.F.; Gallino, S. A study of the 1 and 2 January 2010 sea-storm in the Ligurian Sea. Adv. Sci. Res. 2011, 6, 109. [Google Scholar] [CrossRef]
- Il Secolo XIX. Italian National Newspaper. Available online: www.ilsecoloxix.it (accessed on 7 July 2019).
- Agenzia Regionale per la Protezione dell’Ambiente Liguria ARPAL. Report 2016. Available online: http://www.arpal.gov.it/ (accessed on 15 July 2019).
- Agenzia Regionale per la Protezione dell’Ambiente Liguria ARPAL. Report 2018. Available online: http://www.arpal.gov.it/ (accessed on 15 July 2019).
- Alvesa, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sancheza, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Goepel, K.D. Implementation of an Online Software Tool for the Analytic Hierarchy Process (AHP-OS). Intern. J. Anal. Hierarchy Process 2018, 10, 469–487. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Casazza, M.; Campbell, E.T.; Giannetti, B.F.; Brown, M.T. Development of a new framework for non-monetary accounting on ecosystem services valuation. Ecosyst. Serv. 2018, 34, 37–54. [Google Scholar] [CrossRef]
- Shah, S.M.; Liu, G.; Yang, Q.; Wang, X.; Casazza, M.; Agostinho, F.; Lombardi, G.V.; Giannetti, B.F. Emergy-based Valuation of Agriculture Ecosystem Services and Dis-services. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; John Wiley Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Brown, M.T. War, Peace, and the Computer: Simulation of Disordering and ordering Energies in South Vietnam. In Ecosystems Modeling: Theory and Practice; Hall, C., Day, J., Eds.; Wiley Interscience: New York, NY, USA, 1976. [Google Scholar]
- Prado-Jartar, M.A.; Brown, M.T. Interface Ecosystems with an Oil Spill in a Venezuelan Tropical Savannah. Ecol. Eng. 1996, 8, 49–78. [Google Scholar] [CrossRef]
- Bianciardi, C.; Ulgiati, S. Entropy. In Encyclopedia of Energy; Cleveland, C., Ed.; Academic Press: Oxford, UK; Elsevier: Oxford, UK, 2004; pp. 459–470. [Google Scholar]
- Androulidakis, Y.S.; Kombiadou, K.D.; Makris, C.V.; Baltikas, V.N.; Krestenitis, Y.N. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Oceans 2015, 71, 56–82. [Google Scholar] [CrossRef]
- Sanchez-Arcilla, A.; Sierra, J.P.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Chang. 2016, 16, 2471–2484. [Google Scholar] [CrossRef] [Green Version]
- Ziv, B.; Harats, N.; Morin, E.; Yair, Y.; Dayan, U. Can severe rain events over the Mediterranean region be detected through simple numerical indices? Nat. Hazards 2016, 83, 1197–1212. [Google Scholar] [CrossRef]
- Casazza, M.; Lega, M.; Liu, G.; Ulgiati, S.; Endreny, T.A. Aerosol pollution, including eroded soils, intensifies cloud growth, precipitation, and soil erosion: A review. J. Clean. Prod. 2018, 189, 135–144. [Google Scholar] [CrossRef]
- Zamir, R.; Alpert, P.; Rilov, G. Increase in Weather Patterns Generating Extreme Desiccation Events: Implications for Mediterranean Rocky Shore Ecosystems. Estuaries Coasts 2018, 41, 1868–1884. [Google Scholar] [CrossRef]
- Gargiulo, F.; Persechino, G.; Lega, M.; Errico, A. IDES project: A new effective tool for safety and security in the environment. In International Conference on Algorithms and Architectures for Parallel Processing; Koodziej, J., Di Martino, B., Talia, D., Xiong, K., Eds.; Springer: Cham, Switzerland, 2013; pp. 201–208. [Google Scholar]
- Errico, A.; Angelino, C.V.; Cicala, L.; Persechino, G.; Ferrara, C.; Lega, M.; Vallario, A.; Parente, C.; Masi, G.; Gaetano, R.; et al. Detection of environmental hazards through the feature-based fusion of optical and SAR data: A case study in southern Italy. Int. J. Remote Sens. 2015, 36, 3345–3367. [Google Scholar] [CrossRef] [Green Version]
- Lega, M.; Casazza, M.; Teta, R.; Zappa, C.J. Environmental impact assessment: A multi-level, multi-parametric framework for coastal waters. Int. J. Sustain. Dev. Plan. 2018, 13, 1041–1049. [Google Scholar] [CrossRef]
- Casazza, M.; Lega, M.; Jannelli, E.; Minutillo, M.; Jaffe, D.; Severino, V.; Ulgiati, S. 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives. J. Clean. Prod. 2019, 231, 1342–1352. [Google Scholar] [CrossRef]
- Van Der Sluis, T.; Kizos, T.; Pedroli, B. Landscape change in Mediterranean farmlands: Impacts of land abandonment on cultivation terraces in Portofino (Italy) and Lesvos (Greece). J. Landsc. Ecol. 2014, 7, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Turconi, L.; Nigrelli, G.; Conte, R. Historical datum as a basis for a new GIS application to support civil protection services in NW Italy. Comput. Geosci. 2014, 66, 13–19. [Google Scholar] [CrossRef]
- Luino, F.; Nigrelli, G.; Turconi, L.; Faccini, F.; Agnese, C.; Casillo, F. A proper land-use planning through the use of historical research. Disaster Adv. 2016, 9, 8–19. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, S.; Arcidiacono, A. Adopting an Ecosystem Services-Based Approach for Flood Resilient Strategies: The Case of Rocinha Favela (Brazil). Sustainability 2019, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Tran, T. An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability 2018, 10, 4143. [Google Scholar] [CrossRef] [Green Version]
Catchment | Area (km2) | Perimeter (km) | Mean steepness (%) | Terraced surface (%) | Hydrographical network length (km) | Main stream length (km) |
---|---|---|---|---|---|---|
1—Rio dei Fontanini | 0.585 | 3.507 | 70 | 2.5 | 2.825 | 1.142 |
2—Vallone di San Fruttuoso | 0.444 | 2.945 | 64 | 9.4 | 1.953 | 0.838 |
3—Fosso dell’Acqua Viva (also known as Paraggi Catchment) | 1.480 | 5.330 | 51 | 70 | 7.509 | 1.836 |
DD/MM/YYYY | Type | Municipality | References |
---|---|---|---|
24/10/1911 | Flood, Landslide | SML, CAM | [37,38] |
20/01/1913 | Landslide | SML, CAM | [37] |
25/09/1915 | Flood, Landslide, debris flow | SML, CAM, POR | [13,14,37,39] |
15/10/1953 | Flood | SML | [37,40] |
18/11/1959 | Flood | SML | [37,40] |
06/09/1961 | Flood | SML | [22,40] |
28/10/1961 | Flood | SML | [22,37,40] |
01/12/1961 | Landslides | CAM | [22,41] |
18/04/1963 | Landslides | CAM | [22,41] |
04/12/1963 | Flood | SML | [37,40] |
30/03/1964 | Debris flow | CAM | [22,41] |
14/10/1964 | Debris flow | SML | [37] |
16/10/1987 | Landslide | SML | [37] |
26/02/1989 | Sea Storm | CAM | [42,43] |
27/09/1992 | Flood, Debris flow | CAM, SML | [37] |
15/12/1993 | Sea storm | CAM | [42,43] |
04/11/1994 | Landslides | CAM, SML | [37] |
04-05/10/1995 | Flood, Debris flow | SML, POR, CAM | [22,37] |
25/01/1996 | Debris flow | SML, POR, CAM | [22,37] |
06/11/2000 | Sea Storm, Debris flow | POR, CAM, SML | [22,37,42,43] |
24/11/2002 | Debris flow | CAM | [23,37] |
26/01/2009 | Landslide | POR | [44] |
01/01/2010 | Sea Storm | CAM | [43] |
24/07/2014 | Mudflow | CAM | [44] |
14/10/2016 | Downburst | POR, SML | [45] |
25/10/2016 | Landslides | CAM | [44] |
29/10/2018 | Sea Storm | SML, POR | [46] |
Variable | Relevant Indicators | Existing Baseline | Specific Monitoring Details | ||||
---|---|---|---|---|---|---|---|
Monitoring Approach | Time Resolution | Data Type | Monitoring Phase (Number of Checks) | ||||
WATER | Precipitation (mm) Intense rainfall (mm/h) | Possible source of debris/hyperconcentrated flow | Yes | Weather stations | hourly | .txt | 2 |
Maintenance level of man-made terraces | Possible source of debris/hyperconcentrated flow | No Only the extension of terraced areas is partially known | LIDAR data to assess the real extension of terraced areas; aerial photo interpretation and field survey to evaluate conditions. | vector | 2 | ||
Dead trees in 20 m buffer areas along the hydrographical network | Floating transport in hydrographical network | No | Field survey | . | 2 | ||
Land use | Landslide reduction—debris and hyperconcentrated flow triggering | Yes | Aerial photo interpretation | 2 | |||
NATURE | Riparian habitat area (km2) | Changes in riparian habitat | Yes | Aerial photo interpretation and Field survey | vector | 2 | |
Terrestrial habitat area (km2) | Changes in terrestrial habitat | Yes | Aerial photo interpretation and Field survey | vector | 2 | ||
Vegetation along watercourses (survey) | Change in vegetation along watercourses | Yes | Aerial photo interpretation and Field survey | vector | 2 | ||
Trends and status of range | Change in vegetation along watercourses | Yes | Aerial photo interpretation and Field survey | vector | 2 | ||
Trends and status of the area | Change in vegetation along watercourses | Yes | Aerial photo interpretation and Field survey | vector | 2 | ||
Structure and function including typical species | Change in vegetation along watercourses | Yes | Aerial photo interpretation and Field survey | vector | 2 | ||
Land cover data | Change in land cover | Aerial photo interpretation | 1 | ||||
Type of protected species | Number and type of protected species | Yes | Field survey | .xls | 2 | ||
Number of protected species | Number and type of protected species | Yes | Field survey | .xls | 2 | ||
PEOPLE | Length of improved path | Footpath network recovery through erosion reduction and improvement of path smoothness | No | Field survey | .xls | 2 | |
water drainage improvement | Footpath network recovery through erosion reduction and improvement of path smoothness | No | Field survey | .xls | 2 | ||
Number of recreation activity in the area | Increasing recreational opportunities of NBS area | Yes | Field survey | .xls | 2 | ||
Number of tourists | Number of tourists | Yes | Automatic counter | .xls | 2 | ||
Economic and properties loss during hydro-metrological events | Maintenance and management cost of NBS | Yes | Survey | .xls | 2 | ||
Cultural heritage loss | Maintenance and management cost of NBS | Yes | Survey | .xls | 2 | ||
Maintenance and management cost of grey infrastructures (if implemented) | Reduced need for management and maintenance | Yes | Survey | .xls | 2 | ||
Maintenance and management cost of NBS | Reduced need for management and maintenance | Yes | Survey | .xls | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turconi, L.; Faccini, F.; Marchese, A.; Paliaga, G.; Casazza, M.; Vojinovic, Z.; Luino, F. Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy. Sustainability 2020, 12, 1240. https://doi.org/10.3390/su12031240
Turconi L, Faccini F, Marchese A, Paliaga G, Casazza M, Vojinovic Z, Luino F. Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy. Sustainability. 2020; 12(3):1240. https://doi.org/10.3390/su12031240
Chicago/Turabian StyleTurconi, Laura, Francesco Faccini, Alessandra Marchese, Guido Paliaga, Marco Casazza, Zoran Vojinovic, and Fabio Luino. 2020. "Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy" Sustainability 12, no. 3: 1240. https://doi.org/10.3390/su12031240
APA StyleTurconi, L., Faccini, F., Marchese, A., Paliaga, G., Casazza, M., Vojinovic, Z., & Luino, F. (2020). Implementation of Nature-Based Solutions for Hydro-Meteorological Risk Reduction in Small Mediterranean Catchments: The Case of Portofino Natural Regional Park, Italy. Sustainability, 12(3), 1240. https://doi.org/10.3390/su12031240