Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Extract Preparation
2.4. Share of Individual Plant Elements
2.5. Pumpkin Flesh Colour
2.6. Moisture Content
2.7. Active Acidity
2.8. DPPH Radical Scavenging Activity Assay
2.9. ABTS Radical Scavenging Assay
2.10. Total Polyphenol Content
2.11. Ferric Reducing Antioxidant Power (FRAP) Assay
2.12. Iron Chelating Activity Assay
2.13. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.14. Statistical Analysis
3. Results
3.1. General Characteristics of Pumpkin Cultivars
3.2. Optimization of Extraction of Pumpkin Antioxidative Components
3.2.1. DPPH Radical Scavenging Activity
3.2.2. ABTS Radical Scavenging
3.2.3. Total Phenolic Content (TPC)
3.2.4. Ferric Reducing Antioxidant Power (FRAP)
3.2.5. Iron Chelating Activity
3.3. Comparison of the Antioxidative Activity of Selected Extracts of Various Pumpkin Cultivars
3.3.1. DPPH Radical Scavenging Activity
3.3.2. ABTS Radical Scavenging
3.3.3. Total Phenolic Content (TPC)
3.3.4. Ferric Reducing Antioxidant Power (FRAP)
3.3.5. Iron Chelating Activity
3.3.6. Oxygen Radical Absorbance Capacity (ORAC)
3.3.7. Correlation between Antioxidative Properties of Cucurbita maxima Cultivars Observed in Different Tests
3.3.8. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R.; Lawrenson, J.G. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst. Rev. 2017, 2017, CD000253. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Laxdal, V.A.; Raney, B.L. Antioxidant activity of allicin, an active principle in garlic. Mol. Cell. Biochem. 1995, 148, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pala, R.; Beyaz, F.; Tuzcu, M.; Er, B.; Sahin, N.; Cinar, V.; Sahin, K. The effects of coenzyme Q10 on oxidative stress and heat shock proteins in rats subjected to acute and chronic exercise. J. Exerc. Nutr. Biochem. 2018, 22, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A. Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants 2019, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Gramza-Michałowska, A. The importance of selected spices in cardiovascular diseases. Postepy Hig. Med. Dosw. 2016, 70, 1131–1141. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Sidor, A.; Reguła, J.; Kulczyński, B. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Salvador, A.C.; Król, E.; Lemos, V.C.; Santos, S.A.; Bento, F.P.; Costa, C.P.; Almeida, A.; Szczepankiewicz, D.; Kulczyński, B.; Krejpcio, Z.; et al. Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet. Int. J. Mol. Sci. 2017, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Gramza-Michałowska, A.; Kulczyński, B.; Xindi, Y.; Gumienna, M. Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Sci. Pol. Technol. Aliment. 2016, 15, 447–457. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The role of carotenoids in the prevention and treatment of cardiovascular disease–Current state of knowledge. J. Funct. Foods 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Renaud, J.; Martinoli, M.-G. Considerations for the Use of Polyphenols as Therapies in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; De Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Thayagarajan, A.; Sahu, R.P. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr. Cancer Ther. 2018, 17, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramza-Michałowska, A.; Sidor, A.; Kulczyński, B. Berries as a potential anti-influenza factor–A review. J. Funct. Foods 2017, 37, 116–137. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Braakhuis, A.; Raman, R.; Vaghefi, E. The Association between Dietary Intake of Antioxidants and Ocular Disease. Diseases 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Gramza-Michałowska, A.; Hes, M.; Kobus-Cisowska, J. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem. 2015, 173, 966–971. [Google Scholar] [CrossRef]
- Gramza-Michalowska, A.; Sidor, A.; Hes, M. Herb extract influence on the oxidative stability of selected lipids. J. Food Biochem. 2011, 35, 1723–1736. [Google Scholar] [CrossRef]
- Hęś, M.; Gramza-Michałowska, A. Effect of Plant Extracts on Lipid Oxidation and Changes in Nutritive Value of Protein in Frozen? Stored Meat Products. J. Food Process. Pres. 2017, 41, e12989. [Google Scholar] [CrossRef]
- Ismail, H.; Lee, E.; Ko, K.; Paik, H.; Ahn, D. Effect of Antioxidant Application Methods on the Color, Lipid Oxidation, and Volatiles of Irradiated Ground Beef. J. Food Sci. 2009, 74, C25–C32. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xu, Q.; Dai, R.; Ni, Y. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties. Acta Sci. Pol. Technol. Aliment. 2015, 14, 37–44. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Br. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Tanaka, R.; Kikuchi, T.; Nakasuji, S.; Ue, Y.; Shuto, D.; Igarashi, K.; Okada, R.; Yamada, T. A Novel 3a-p-Nitrobenzoylmultiflora-7:9(11)-diene-29-benzoate and Two New Triterpenoids from the Seeds of Zucchini (Cucurbita pepo L.). Molecules 2013, 18, 7448–7459. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-L.; Mi, L.; Hu, X.-Y.; Zhu, B.-H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef]
- Nishimura, M.; Ohkawara, T.; Sato, H.; Takeda, H.; Nishihira, J. Pumpkin Seed Oil Extracted from Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder. J. Tradit. Complement. Med. 2014, 4, 72–74. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita pepo L. and Cucurbita moschata Pumpkin Cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [Green Version]
- Zaccari, F.; Galietta, G. α-Carotene and β-Carotene Content in Raw and Cooked Pulp of Three Mature Stage Winter Squash “Type Butternut”. Foods 2015, 4, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, H.S.; Daunay, M.-C.; Pitrat, M.; Janick, J. First Known Image of Cucurbita in Europe, 1503–1508. Ann. Bot. 2006, 98, 41–47. [Google Scholar] [CrossRef]
- Lust, T.A.; Paris, H.S. Italian horticultural and culinary records of summer squash (Cucurbita pepo, Cucurbitaceae) and emergence of the zucchini in 19th-century Milan. Ann. Bot. 2016, 118, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.; Santos, P.; Rosa, E.A. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. J. Food Sci. Technol. 2015, 52, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Can-Cauich, C.A.; Sauri-Duch, E.; Moo-Huchin, V.M.; Betancur-Ancona, D.; Cuevas-Glory, L.F. Effect of extraction method and specie on the content of bioactive compounds and antioxidant activity of pumpkin oil from Yucatan, Mexico. LWT-Food Sci. Technol. 2019, 285, 186–193. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sánchez-Moreno, J.; Fulgencio, S. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Kiat, V.V.; Siang, W.K.; Madhavan, P.; Jin, C.J.; Ahmad, M.; Akowuah, G. FT-IR profile and antiradical activity of dehulled kernels of apricot, almond and pumpkin. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 112–120. [Google Scholar]
- Tiveron, A.P.; Melo, P.S.; Bergamaschi, K.B.; Vieira, T.M.F.S.; Regitano-D’Arce, M.A.B.; Alencar, S.M. Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. Int. J. Mol. Sci. 2012, 13, 8943–8957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.; Shukla, S.; Singh, V.; Rai, A.K. Phenolic Content and Antioxidant Capacity of Selected Cucurbit Fruits Extracted with Different Solvents. J. Nutr. Food Sci. 2016, 6, 6. [Google Scholar] [CrossRef]
- Bayili, R.G.; Abdoul-Latif, F.; Kone, O.; Diao, M.; Bassole, I.; Dicko, M. Phenolic compounds and antioxidant activities in some fruits and vegetables from Burkina Faso. Afr. J. Biotechnol. 2011, 10, 62. [Google Scholar]
- Valenzuela, G.M.; Soro, A.S.; Tauguinas, A.L.; Gruszycki, M.R.; Cravzov, A.L.; Giménez, M.C.; Wirth, A. Evaluation Polyphenol Content and Antioxidant Activity in Extracts of Cucurbita spp. OALib 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Dar, P.; Farman, M.; Dar, A.; Khan, Z.; Munir, R.; Rasheed, A.; Waqas, U. Evaluation of Antioxidant potential and comparative analysis of Antimicrobial activity of Various Extracts of Cucurbita pepo L. Leaves. J. Agric. Sci. Food Technol. 2017, 3, 103–109. [Google Scholar]
- Oloyede, F.; Agbaje, G.; Obuotor, E.; Obisesan, I. Nutritional and antioxidant profiles of pumpkin (Cucurbita pepo Linn.) immature and mature fruits as influenced by NPK fertilizer. Food Chem. 2012, 135, 460–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidrianny, I.; Darmawati, A.; Sukrasno, S. Antioxidant capacities from different polarities extracts of cucurbitaceae leaves using FRAP, DPPH assays and correlation with phenolic, flavonoid, carotenoid content. Int. J. Pharm. Pharm. Sci. 2014, 6, 858–862. [Google Scholar]
- Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Garrett, A.R.; Murray, B.K.; Robinson, R.A.; O’Neill, K.L. Measuring antioxidant capacity using the ORAC and TOSC assays. Methods Mol. Biol. 2010, 594, 251–262. [Google Scholar]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. Available online: https://naldc.nal.usda.gov/download/43336/PDF (accessed on 2 May 2010).
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Am. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
Pumpkin Cultivars | Shape | Flesh Colour | pH of Pulp Juice | Moisture Content in the Pulp (%) | Share of Individual Pumpkin Plant Elements | |||||
---|---|---|---|---|---|---|---|---|---|---|
Description | L | a | b | Skin Content (%) | Seeds Content (%) | Pulp Content (%) | ||||
Hokkaido | round, slightly elongated at the tail | orange | 53.59 ± 1.97b | 28.17 ± 0.74g | 47.57 ± 1.23ab | 6.13 ± 0.02h | 88.47 ± 0.59e | 17.82 ± 2.06de | 11.46 ± 2.38e | 70.59 ± 3.97b |
Blue Kuri | round | yellow | 48.38 ± 2.93a | 21.29 ± 1.40de | 43.23 ± 1.25a | 5.94 ± 0.02f | 78.76 ± 1.90a | 18.14 ± 2.08e | 8.08 ± 1.78cd | 75.63 ± 2.46bc |
Buttercup | round, slightly flattened | yellow | 56.58 ± 4.13bc | 27.76 ± 1.96g | 48.62 ± 1.91bc | 5.16 ± 0.03b | 83.93 ± 0.84c | 14.08 ± 1.89c | 3.44 ± 0.86b | 84.03 ± 2.99cd |
Gomez | round | orange | 56.43 ± 3.07bc | 18.82 ± 1.78cd | 50.76 ± 0.88c | 5.09 ± 0.02a | 91.33 ± 0.72f | 18.73 ± 2.41e | 5.82 ± 1.40c | 79 ± 3.71c |
Shokichi Shiro | round | orange | 53.56 ± 2.59b | 13.21 ± 0.87b | 45.25 ± 1.80ab | 5.72 ± 0.04e | 88.79 ± 1.49e | 20.7 ± 2.97ef | 6.67 ± 1.76c | 72.74 ± 2.15b |
Jumbo pink banana | elongated | orange | 55.78 ± 2.05b | 25.81 ± 1.09f | 49.96 ± 2.04c | 5.49 ± 0.02d | 90.61 ± 1.33f | 10.39 ± 2.54a | 4.2 ± 1.58bc | 87.11 ± 3.13d |
Golden hubbard | round, slightly elongated at the tail | orange | 61.96 ± 2.65de | 25.14 ± 1.95f | 56.03 ± 2.79d | 5.16 ± 0.02b | 90.85 ± 1.03f | 32.41 ± 3.45h | 5.06 ± 1.02c | 63.39 ± 3.10a |
Flat White Boer Ford | round, clearly flattened | orange | 55.01 ± 2.11b | 25.25 ± 1.65f | 45.89 ± 0.85ab | 5.22 ± 0.03c | 90.1 ± 0.83f | 15.52 ± 2.04cd | 3.72 ± 0.50b | 83.29 ± 3.39cd |
Jarrahdale | round, flattened, irregular | orange | 63.59 ± 2.85f | 20.02 ± 0.80d | 58.13 ± 1.7de | 6.06 ± 0.03g | 85.78 ± 0.69d | 12.53 ± 2.43ab | 5.82 ± 0.96c | 83.94 ± 4.27cd |
Porcelain Doll | round, slightly flattened | orange | 58.28 ± 1.55c | 17.78 ± 1.80c | 55.29 ± 2.49d | 5.51 ± 0.03d | 94.85 ± 0.78h | 22.78 ± 2.84f | 9.7 ± 1.31d | 69.24 ± 3.61b |
Galeux d Eysines | flattened | orange | 55.47 ± 2.08bc | 22.73 ± 1.01e | 49.67 ± 1.21c | 5.95 ± 0.04f | 94.78 ± 0.45h | 11.44 ± 2.13a | 5.93 ± 1.07c | 85.09 ± 2.71cd |
Green hubbard | elongated | orange | 59.38 ± 2.54cd | 19.11 ± 0.57cd | 60.94 ± 1.81e | 5.69 ± 0.06e | 88.26 ± 1.92e | 32.54 ± 4.75h | 2.79 ± 0.92a | 63.47 ± 3.82a |
Marina di Chiggia | round | yellow | 64.43 ± 2.55f | 8.36 ± 0.45a | 60.07 ± 1.45e | 6.10 ± 0.02h | 81.17 ± 1.29b | 26.7 ± 2.43fg | 4.23 ± 0.79bc | 70.09 ± 4.21b |
Melonowa Żółta | round | orange | 60.48 ± 1.97 | 20.2 ± 2.48d | 55.97 ± 1.84d | 5.93 ± 0.02f | 93.25 ± 1.32g | 14.37 ± 2.83c | 2.45 ± 0.48a | 83.21 ± 3.54e |
Solvent | Extraction Time and Temperature | |||||
---|---|---|---|---|---|---|
1 h | 2 h | |||||
30 °C | 50 °C | 70 °C | 30 °C | 50 °C | 70 °C | |
Acetone | 74.61 ± 1.25bA | 90.94 ± 0.81bB | n.a. | 82.37 ± 0.98bA | 91.29 ± 0.96bB | n.a. |
Acetone–water (80%) | 88.81 ± 0.99cA | 88.42 ± 1.08bA | n.a. | 97.46 ± 1.24cA | 111.51 ± 1.31bB | n.a. |
Ethyl acetate | 63.58 ± 123aA | 89.98 ± 1.21bB | 116.15 ± 1.54bC | 59.57 ± 0.65aA | 88.25 ± 1.1aB | 133.59 ± 1.76bC |
Ethyl acetate–water (80%) | 106.93 ± 1.32dA | 112.3 ± 1.46cB | 161.67 ± 1.76cC | 111.15 ± 1.18dA | 111 ± 0.97bA | 161.67 ± 1.76cB |
Ethanol | 127.78 ± 2.13fA | 133.36 ± 1.13dB | 177.16 ± 2.07dC | 143.8 ± 1.54eA | 156.56 ± 1.29dB | 182.51 ± 1.86dC |
Ethanol–water (80%) | 115.37 ± 1.33eA | 79.36 ± 1.61aB | 114.93 ± 2.09bA | 119.05 ± 1.04dA | 132.28 ± 1.17cB | 157.52 ± 2.06cC |
Methanol | 88.44 ± 0.46cA | 88.58 ± 1.16bA | 60.46 ± 1.60aB | 82.29 ± 1.25bA | 91.59 ± 1.47bB | 84.33 ± 1.90aC |
Methanol–water (80%) | 136.31 ± 1.70gA | 151.26 ± 1.98eB | 198.95 ± 2.39fC | 165.87 ± 1.38fA | 180.41 ± 1.8eB | 210.97 ± 2.13eC |
Water | 151.49 ± 1.33hA | 158.37 ± 2.46eA | 180.70 ± 3.43eB | 168.27 ± 1.20fA | 174.45 ± 2.76eB | 183.40 ± 3.08dC |
Solvent | Extraction Time and Temperature | |||||
---|---|---|---|---|---|---|
1 h | 2 h | |||||
30 °C | 50 °C | 70 °C | 30 °C | 50 °C | 70 °C | |
Acetone | 24.62 ± 0.32aA | 31.51 ± 0.97aB | n.a. | 19.06 ± 0.19aA | 27.5 ± 0.44aB | n.a. |
Acetone–water (80%) | 45.9 ± 1.04dA | 45.18 ± 0.98cB | n.a. | 55.30 ± 1.00dA | 62.11 ± 0.35eB | n.a. |
Ethyl acetate | 24.9 ± 0.98aA | 30.83 ± 0.90aB | 41.23 ± 1.27bC | 33.63 ± 1.02bA | 35.76 ± 0.26bB | 52.25 ± 1.11aC |
Ethyl acetate–water (80%) | 35.53 ± 1.23cA | 44.57 ± 0.38cB | 36.78 ± 0.55aA | 40.48 ± 0.66cA | 42.33 ± 0.42cB | 50.05 ± 0.95aC |
Ethanol | 28.43 ± 0.50bA | 38.21 ± 1.09bB | 52.68 ± 1.01cC | 37.89 ± 0.99bA | 54.8 ± 1.06dB | 60.69 ± 1.27bC |
Ethanol–water (80%) | 62.08 ± 0.48eB | 57.24 ± 2.08dA | 66.68 ± 0.52dC | 58.89 ± 1.07dA | 71.81 ± 1.90fB | 73.80 ± 1.17cB |
Methanol | 35.47 ± 0.99cA | 49.23 ± 0.71cB | 62.26 ± 0.38dC | 40.07 ± 0.62cA | 58.86 ± 0.73dB | 70.65 ± 0.44cC |
Methanol–water (80%) | 74.07 ± 1.11eA | 84.44 ± 0.82eB | 104.09 ± 1.02eC | 82.27 ± 1.03eA | 95.31 ± 0.32gB | 110.84 ± 0.57dC |
Water | 79.30 ± 0.39eA | 108.5 ± 1.53fB | 108.16 ± 0.65eB | 85.16 ± 0.86eA | 127.31 ± 1.39hB | 124.70 ± 0.59eC |
Solvent. | Extraction Time and Temperature | |||||
---|---|---|---|---|---|---|
1 h | 2 h | |||||
30 °C | 50 °C | 70 °C | 30 °C | 50 °C | 70 °C | |
Acetone | 12.29 ± 0.22bA | 24.10 ± 0.17cB | n.a. | 7.49 ± 0.10aA | 11.546 ± 0.10bB | n.a. |
Acetone–water (80%) | 89.51 ± 1.50dA | 64.19 ± 0.71dB | n.a. | 67.05 ± 0.96dA | 74.51 ± 0.44dB | n.a. |
Ethyl acetate | 3.09 ± 0.06aA | 8.09 ± 0.08aB | 22.88 ± 0.11bC | 5.2 ± 0.05aA | 7.82 ± 0.03aB | 18.54 ± 0.15aC |
Ethyl acetate–water (80%) | 12.82 ± 0.21bA | 14.32 ± 0.16bB | 18.49 ± 0.29aC | 16.84 ± 0.45bA | 24.95 ± 0.24cB | 30.23 ± 0.21bC |
Ethanol | 46.27 ± 0.48cA | 75.95 ± 1.01eB | 130.59 ± 1.53cC | 62.00 ± 0.52cA | 102.35 ± 0.89fB | 164.47 ± 1.88dC |
Ethanol–water (80%) | 106.52 ± 0.77fA | 93.25 ± 0.44fB | 132.86 ± 1.61cC | 131.63 ± 1.22fA | 128.11 ± 1.13gB | 186.75 ± 2.05eC |
Methanol | 49.41 ± 0.46cA | 92.88 ± 0.77fB | 147.06 ± 1.28dC | 58.51 ± 1.10cA | 88.52 ± 0.61eB | 136.67 ± 1.26cC |
Methanol–water (80%) | 128.62 ± 0.76gA | 101.69 ± 1.12gB | 162.51 ± 1.49eC | 166.23 ± 0.97gA | 160.12 ± 1.20hB | 206.47 ± 2.44fC |
Water | 93.41 ± 1.46eA | 155.83 ± 1.31hB | 186.47 ± 2.93fC | 108.2 ± 1.15eA | 171.97 ± 2.15iB | 237.94 ± 2.42gC |
Solvent | Extraction Time and Temperature | |||||
---|---|---|---|---|---|---|
1 h | 2 h | |||||
30 °C | 50 °C | 70 °C | 30 °C | 50 °C | 70 °C | |
Acetone | 71.32 ± 0.98dA | 118.96 ± 1.38cB | n.a. | 88.21 ± 0.99dA | 127.91 ± 2.46dB | n.a. |
Acetone–water (80%) | 189.12 ± 1.65gA | 180.17 ± 3.14eA | n.a. | 249.59 ± 2.40iA | 240.89 ± 2.28gA | n.a. |
Ethyl acetate | 28.56 ± 0.33bA | 56.69 ± 0.63bB | 182.27 ± 1.83cC | 23.32 ± 0.23bA | 40.82 ± 0.74bB | 158.37 ± 1.50cC |
Ethyl acetate–water (80%) | 36.05 ± 0.67cA | 55.57 ± 0.62bB | 131.42 ± 2.57bC | 43.08 ± 0.41cA | 57.71 ± 0.64cB | 119.87 ± 2.48bC |
Ethanol | 97.67 ± 1.52eA | 172.86 ± 1.62dB | 344.25 ± 4.09eC | 128.13 ± 1.09fA | 226.36 ± 2.40fB | 351.06 ± 2.53eC |
Ethanol–water (80%) | 221.36 ± 2.03hA | 217.73 ± 1.86fA | 309.05 ± 2.01dB | 171.18 ± 1.12gA | 263.49 ± 3.09hB | 346.79 ± 4.40eC |
Methanol | 106.1 ± 1.66fA | 181.93 ± 1.81eB | 360.74 ± 3.50fC | 117.75 ± 2.22eA | 222.13 ± 2.13fB | 349.59 ± 3.99eC |
Methanol–water (80%) | 230.73 ± 3.54iA | 231.35 ± 2.60gA | 320.91 ± 4.65dB | 199.39 ± 3.60hA | 213.35 ± 3.21eB | 290.15 ± 3.48dC |
Water | 13.15 ± 0.14aA | 33.76 ± 0.25aB | 85.06 ± 1.08aC | 8.67 ± 0.25aA | 22.51 ± 0.38aB | 48.57 ± 1.33aC |
Solvent | Extraction Time and Temperature | |||||
---|---|---|---|---|---|---|
1 h | 2 h | |||||
30 °C | 50 °C | 70 °C | 30 °C | 50 °C | 70 °C | |
Acetone | 1338.66 ± 23.26dA | 1618.62 ± 17.42dB | n.a. | 1435.13 ± 23.41dA | 1781.61 ± 16.62dB | n.a. |
Acetone–water (80%) | 1116.18 ± 13.55cA | 1452.60 ± 24.50cB | n.a. | 1343.64 ± 12.54cA | 1527.80 ± 12.67cB | n.a. |
Ethyl acetate | 385.00 ± 3.93bA | 454.31 ± 3.17bB | 1563.68 ± 22.42bC | 589.78 ± 5.48bA | 888.62 ± 6.08bB | 1563.68 ± 25.42bC |
Ethyl acetate–water (80%) | 102.37 ± 5.13aA | 174.30 ± 3.18aB | 1276.61 ± 18.34aC | 438.09 ± 4.22aA | 723.49 ± 4.24aB | 1236.57 ± 14.16aC |
Ethanol | 2542.92 ± 28.88fA | 1809.22 ± 16.08eB | 3023.88 ± 25.61dC | 3146.40 ± 31.62fA | 2787.12 ± 13.93eB | 3486.03 ± 36.51dC |
Ethanol–water (80%) | 3641.36 ± 32.92hA | 2715.41 ± 12.23gB | 3864.89 ± 34.29eC | 3905.50 ± 35.72hA | 3219.77 ± 18.90fB | 4144.63 ± 45.86fC |
Methanol | 3015.23 ± 33.00gA | 3279.077.37.34hB | 3854.02 ± 46.36eC | 3497.55 ± 28.65gA | 3579.78 ± 39.10gB | 3974.26 ± 27.17eC |
Methanol–water (80%) | 3897.77 ± 44.08hA | 3553.34 ± 28.12iB | 4060.22 ± 28.37fC | 4202.27 ± 37.15iA | 4071.18 ± 39.20hB | 4381.1 ± 52.25gC |
Water | 1796.45 ± 12.16eA | 2108.03 ± 16.61fB | 2159.47 ± 16.74cC | 2009.48 ± 16.53eA | 2566.80 ± 24.05eB | 2224.65 ± 26.57cC |
Pumpkin Cultivars | ABTS (mg Tx/100 g dm) | DPPH (mg Tx/100 g dm) | ||
---|---|---|---|---|
Aqueous–Methanol Extract | Aqueous Extract | Aqueous–Methanol Extract | Aqueous Extract | |
Hokkaido | 110.84 ± 0.57cA | 124.70 ± 0.59dB | 210.97 ± 2.13hA | 183.40 ± 3.08iB |
Blue Kuri | 85.12 ± 1.73aA | 104.78 ± 1.45bB | 145.44 ± 1.80fA | 67.43 ± 0.88eB |
Buttercup | 116.37 ± 1.64dA | 114.04 ± 1.00cA | 185.19 ± 2.01gA | 76.58 ± 1.13fB |
Gomez | 127.36 ± 1.66eA | 107.19 ± 1.5bB | 86.12 ± 1.90bA | 34.11 ± 0.86aB |
Shokichi Shiro | 99.79 ± 1.71bA | 123.75 ± 0.96dB | 57.54 ± 0.88aA | 42.22 ± 1.15bB |
Jumbo pink banana | 146.91 ± 0.68fA | 173.11 ± 1.37gB | 86.72 ± 0.96bA | 72.9 ± 0.9fB |
Golden hubbard | 117.24 ± 1.20dA | 152.01 ± 1.46gB | 127.5 ± 1.64dA | 52.5 ± 0.67dB |
Flat White Boer Ford | 113.07 ± 1.24cdA | 95.92 ± 1.39aB | 204.12 ± 2.28gA | 96.49 ± 1.54gB |
Jarahdale | 95.90 ± 1.44bA | 104.25 ± 1.28bB | 136.90 ± 2.62eA | 70.23 ± 1.28fB |
Porcelain doll | 109.74 ± 1.24cA | 138.04 ± 1.47eB | 82.42 ± 0.83bA | 49.99 ± 1.21cB |
Galeux d’ Eysines | 122.32 ± 1.19eA | 110.07 ± 1.34bB | 206.99 ± 2.24hA | 127.85 ± 1.03hB |
Green hubbard | 103.87 ± 1.54cA | 136.11 ± 1.13eB | 101.98 ± 1.21cA | 54.39 ± 0.75dB |
Marina di Chiggia | 118.28 ± 1.12dA | 143.52 ± 2.43fB | 105.63 ± 1.07cA | 73.86 ± 0.85fB |
Melonowa Żółta | 152.86 ± 1.64fA | 187.17 ± 2.55hB | 245.98 ± 3.10iA | 222.23 ± 3.87jB |
Pumpkin Cultivars | Total Phenolic Content (mg GAE/100 g dm) | ORAC (µM Tx/g dm) | |
---|---|---|---|
Aqueous–Methanol Extract | Aqueous Extract | ||
Hokkaido | 206.47 ± 2.44hA | 237.94 ± 2.42iB | 89.97 ± 2.07d |
Blue Kuri | 49.78 ± 0.76aA | 65.66 ± 0.71aB | 58.47 ± 0.70b |
Buttercup | 87.99 ± 1.52eA | 115.24 ± 1.85fB | 102.08 ± 1.84f |
Gomez | 172.63 ± 1.06gdA | 188.22 ± 2.73hB | 99.35 ± 3.05e |
Shokichi Shiro | 58.01 ± 1.08cA | 66.64 ± 1.90aB | 108.47 ± 2.32g |
Jumbo pink banana | 50.23 ± 1.61bA | 66.40 ± 0.83aB | 86.60 ± 1.19d |
Golden hubbard | 91.46 ± 1.16eA | 101.05 ± 1.13eB | 116.38 ± 1.91h |
Flat White Boer Ford | 70.99 ± 1.03dA | 66.01 ± 1.33aB | 43.04 ± 1.72a |
Jarahdale | 56.35 ± 0.90cA | 72.61 ± 1.44bB | 65.34 ± 1.83c |
Porcelain doll | 174.53 ± 1.37gA | 189.40 ± 0.78hB | 98.35 ± 2.36e |
Galeux d’ Eysines | 113.40 ± 1.42fA | 95.56 ± 1.36dB | 94.87 ± 0.53e |
Green hubbard | 58.62 ± 1.36cA | 126.08 ± 1.72gB | 102.90 ± 1.64f |
Marina di Chiggia | 49.99 ± 1.49aA | 77.71 ± 1.35cB | 104.76 ± 1.84f |
Melonowa Żółta | 232.5 ± 2.63iA | 255.69 ± 4.29jB | 122.73 ± 3.39i |
Pumpkin Cultivars | Iron Chelating Activity (ppm EDTA/100 g dm) | FRAP (mM Fe(II)/100 g dm) | ||
---|---|---|---|---|
Aqueous–Methanol Extract | Aqueous Extract | Aqueous–Methanol Extract | Aqueous Extract | |
Hokkaido | 4381.1 ± 52.25aA | 2224.65 ± 26.57aB | 290.15 ± 3.48bA | 48.57 ± 1.33aB |
Blue Kuri | 11385.16 ± 56.32gA | 7561.89 ± 46.15jB | 337.39 ± 1.63cA | 123.14 ± 1.73gB |
Buttercup | 5702.74 ± 59.19bA | 2938.91 ± 30.21bB | 592.78 ± 2.24jA | 283.34 ± 2.43lB |
Gomez | 12804.62 ± 90.97gA | 8125.81 ± 31.32kB | 407.05 ± 1.72eA | 111.54 ± 1.66fB |
Shokichi Shiro | 11350.7 ± 100.45gA | 5029.95 ± 25.77fB | 324.31 ± 1.60cA | 84.50 ± 1.84dB |
Jumbo pink banana | 7499.11 ± 83.49dA | 5194.75 ± 45.07fB | 386.83 ± 2.43dA | 140.94 ± 1.76hB |
Golden hubbard | 5635.76 ± 78.83bA | 3255.99 ± 38.26cB | 405.43 ± 2.81eA | 95.31 ± 1.12eB |
Flat White Boer Ford | 7421.45 ± 78.67dA | 6131.97 ± 24.33iB | 509.28 ± 3.62gA | 169.41 ± 1.16iB |
Jarahdale | 6197.18 ± 50.75cA | 5314 ± 26.52gB | 478.86 ± 4.04fA | 110.17 ± 1.83fB |
Porcelain doll | 9321.91 ± 81.67fA | 5782.54 ± 56.89hB | 501.19 ± 5.79gA | 202.2 ± 2.13jB |
Galeux d’ Eysines | 6119.04 ± 84.52cA | 4302.19 ± 65.47eB | 524.90 ± 4.25hA | 213.30 ± 2.47kB |
Green hubbard | 10760.30 ± 99.76gA | 7349.57 ± 81.84jB | 293.67 ± 2.28bA | 66.34 ± 1.27cB |
Marina di Chiggia | 7753.32 ± 25.21eA | 5715.51 ± 69.28hB | 266.24 ± 2.97aA | 58.19 ± 1.24bB |
Melonowa Żółta | 5615.31 ± 49.74bA | 4095.36 ± 47.03dB | 555.63 ± 6.94iA | 364.90 ± 6.70mB |
ABTS | DPPH | Total Phenolic Content | Iron Chelating Activity | FRAP | ORAC | |
---|---|---|---|---|---|---|
ABTS | x | −0.01 | 0.41 ** | −0.37 * | −0.38 * | 0.64 *** |
DPPH | −0.01 | x | 0.14 | −0.26 | 0.32 | −0.07 |
Total polyphenols content | 0.41 ** | 0.14 | x | −0.47 ** | −0.24 | 0.59 *** |
Iron chelating activity | −0.37 * | −0.26 | −0.47 ** | x | −0.01 | −0.35 * |
FRAP | −0.38 * | 0.32 | −0.24 | −0.01 | x | −0.47 ** |
ORAC | 0.64 *** | −0.07 | 0.59 *** | −0.35 * | −0.47 ** | x |
ABTS | DPPH | Total Phenolic Content | Iron Chelating Activity | FRAP | |
---|---|---|---|---|---|
ABTS | x | −0.04 | 0.37* | −0.39* | −0.06 |
DPPH | −0.04 | x | 0.38 | −0.53*** | 0.45* |
Total Polyphenols Content | 0.37* | 0.38 | x | −0.63*** | 0.39* |
Iron Chelating Activity | −0.39* | −0.53*** | −0.63*** | x | −0.16 |
FRAP | −0.06 | 0.45* | 0.39* | −0.16 | x |
Cluster 1 | Cluster 2 | p Value | ||
---|---|---|---|---|
Aqueous–methanol extract | ABTS | 120.49 ± 13.72 | 104.84 ± 14.01 | p < 0.05 |
DPPH | 190.21 ± 99.12 | 95.24 ± 30.17 | p < 0.05 | |
Total polyphenols content | 84.46 ± 31.73 | 62.78 ± 9.72 | p < 0.05 | |
Iron chelating activity | 6210.87 ± 1188.94 | 11061.61 ± 1127.68 | p < 0.05 | |
FRAP | 415.28 ± 118.85 | 372.52 ± 76.37 | NS. | |
Aqueous extract | ABTS | 130.6 ± 25.69 | 122.04 ± 14.5 | NS. |
DPPH | 91.74 ± 40.25 | 49.49 ± 11.66 | p < 0.05 | |
Total polyphenols content | 95.54 ± 29.02 | 87.29 ± 22.81 | NS. | |
Iron chelating activity | 4346.98 ± 1301.87 | 6745.29 ± 1191.65 | p < 0.05 | |
FRAP | 135.33 ± 71.86 | 117.54 ± 47.87 | NS. | |
ORAC | 91.75 ± 24.88 | 93.51 ± 19.98 | NS. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. https://doi.org/10.3390/su12041305
Kulczyński B, Gramza-Michałowska A, Królczyk JB. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability. 2020; 12(4):1305. https://doi.org/10.3390/su12041305
Chicago/Turabian StyleKulczyński, Bartosz, Anna Gramza-Michałowska, and Jolanta B. Królczyk. 2020. "Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima)" Sustainability 12, no. 4: 1305. https://doi.org/10.3390/su12041305
APA StyleKulczyński, B., Gramza-Michałowska, A., & Królczyk, J. B. (2020). Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability, 12(4), 1305. https://doi.org/10.3390/su12041305