Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value
Abstract
:1. Introduction
2. Wetland Loss Is a Great Threat to Global Biodiversity
2.1. Accelerating Loss of Natural Wetlands
2.2. Ecological Consequences of Wetland Loss
3. CWs Have the Potential to Mitigate Global Biodiversity Loss
3.1. CWs Can Play an Important Role in Biodiversity Conservation
3.2. Empirical Studies Confirm the Biodiversity Benefits of CWs
3.3. Spatial-Temporal Characteristics of the Biodiversity Benefits of CWs
4. Biodiversity Enhances the Treatment Efficiency of CWs
4.1. Microorganisms Dominate Contaminant Removal
4.2. Vegetation Has Multiple Effects on Treatment Efficiency of CWs
4.3. Effects of Aquatic Animals on Purification in CWs are Understudied
5. Challenges in Using CWs to Conserve Biodiversity
5.1. CWs are Simplified Replications of Natural Wetlands
5.2. Simple Species Composition Increases the Risk of Invasion
5.3. CWs May Become an ‘Ecological Trap’
6. Going Forwards: Recommendations for Future Research Priorities
6.1. Multi-Objective Management of CWs
6.2. Integrated Watershed Management
6.3. Accurate Simulation of Natural Wetlands
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zedler, J.B.; Kercher, S. Wetland resource: Status, trends, ecosystem services, and restorability. Annu Rev Env Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.P. Wetland Loss and Biodiversity Conservation. Conserv. Boil. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Wassmann, R.; Vlek, P.L.G. Global Inventory of Wetlands and Their Role in the Carbon Cycle; ZEF Discusson Papers on Development Policy; ZEF: Bonn, Germany, 2003; pp. 20–23. [Google Scholar]
- Dugan, P. Wetlands in Danger: A World Conservation Atlas; Oxford University Press: New York, NY, USA, 1993; p. 192. [Google Scholar]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Ramsar Convention Secretariat. Ransar Handbook for Wise Use of Wetlands, 2nd ed.; Wetland Inventory: A Ramsar framework for wetland inventory; Ramsar Convention Secretariat: Gland, Switzerland, 2004; p. 10. [Google Scholar]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Horvath, E.K.; Christensen, J.R.; Mehaffey, M.H.; Neale, A.C. Building a potential wetland restoration indicator for the contiguous United States. Ecol. Indic. 2017, 83, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Uluocha, N.O.; Okeke, I.C. Implications of wetlands degradation for water resources management: Lessons from Nigeria. GeoJournal 2004, 61, 151–154. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, C.; Jia, L.; Feng, L.; Wang, R.; Wu, H. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths. Bioresour. Technol. 2018, 247, 844–850. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Badhe, N.; Saha, S.; Biswas, R.; Nandy, T.; Mondal, R.B. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresour. Technol. 2014, 169, 596–604. [Google Scholar] [CrossRef]
- Ramsar Convention Secretariat. Global wetland outlook: State of the World’s Wetlands and Their Services to People; Ramsar Convention on Wetlands: Gland, Switzerland, 2018; p. 24. [Google Scholar]
- Li, X.; Ding, A.; Zheng, L.; Anderson, B.C.; Kong, L.; Wu, A.; Xing, L. Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecol. Eng. 2018, 123, 135–140. [Google Scholar] [CrossRef]
- Abbasi, H.N.; Lu, X.; Xu, F. Wastewater Treatment Strategies in China: An Overview. Sci. Lett. 2016, 1, 15–25. [Google Scholar]
- Hale, R.; Swearer, S.E.; Sievers, M.; Coleman, R. Balancing biodiversity outcomes and pollution management in urban stormwater treatment wetlands. J. Environ. Manag. 2019, 233, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J. Chemical and biological benefits in a stormwater wetland in Kalmar, SE Sweden. Limnologica 2012, 42, 299–309. [Google Scholar] [CrossRef]
- Green, A.J.; Elmberg, J. Ecosystem services provided by waterbirds. Biol Rev. 2014, 89, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.T.J.; Hoverman, J.T.; McKenzie, V.J.; Blaustein, A.R.; Richgels, K.L.D. Urbanization and wetland communities: Applying metacommunity theory to understand the local and landscape effects. J Appl Ecol. 2013, 50, 34–42. [Google Scholar] [CrossRef]
- Engelhardt, K.A.M.; Ritchie, M.E. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 2001, 411, 687–689. [Google Scholar] [CrossRef]
- Zhu, S.-X.; Ge, H.-L.; Ge, Y.; Cao, H.-Q.; Liu, N.; Chang, J.; Zhang, C.-B.; Gu, B.-J.; Chang, S.-X. Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland. Ecol. Eng. 2010, 36, 1307–1313. [Google Scholar] [CrossRef]
- Han, W.; Luo, G.; Luo, B.; Yu, C.; Wang, H.; Chang, J.; Ge, Y. Effects of plant diversity on greenhouse gas emissions in microcosms simulating vertical constructed wetlands with high ammonium loading. J. Environ. Sci. 2019, 77, 229–237. [Google Scholar] [CrossRef]
- Wang, H.; Ji, G.; Bai, X.; He, C. Assessing nitrogen transformation processes in a trickling filter under hydraulic loading rate constraints using nitrogen functional gene abundances. Bioresour. Technol. 2015, 177, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Boesch, D.F.; Josselyn, M.N.; Mehta, A.J.; Morris, J.T.; Nuttle, W.K.; Simenstad, C.A.; Swift, D.J.P. Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J. Coastal Res. 1994, 20, 1–103. [Google Scholar]
- Coleman, J.M.; Huh, O.K.; Braud, D. Wetland Loss in World Deltas. J. Coast. Res. 2008, 1, 1–14. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; De Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total. Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Wetland China. The Report on The Second National Wetland Resources Survey (2009–2013). 2014. Available online: http://www.shidi.org/sf_33AF13E7A829473783CDCBAF1064CFE2_151_cnplph.html (accessed on 2 December 2019).
- Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005; pp. 26–29. [Google Scholar]
- Bang, W.H.; Jung, Y.; Park, J.W.; Lee, S.; Maeng, S.K. Effects of hydraulic loading rate and organic load on the performance of a pilot-scale hybrid VF-HF constructed wetland in treating secondary effluent. Chemosphere 2019, 218, 232–240. [Google Scholar] [CrossRef]
- Ge, Z.; Wei, D.; Zhang, J.; Hu, J.; Liu, Z.; Li, R. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study. Water Res. 2019, 148, 153–161. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Russo, N.; Marzo, A.; Randazzo, C.; Caggia, C.; Toscano, A.; Cirelli, G.L. Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants. Sci. Total. Environ. 2019, 656, 558–566. [Google Scholar] [CrossRef]
- Uusheimo, S.; Huotari, J.; Tulonen, T.; Aalto, S.L.; Rissanen, A.J.; Arvola, L. High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate. Environ. Sci. Technol. 2018, 52, 13343–13350. [Google Scholar] [CrossRef] [PubMed]
- Tondera, K.; Ruppelt, J.P.; Pinnekamp, J.; Kistemann, T.; Schreiber, C. Reduction of micropollutants and bacteria in a constructed wetland for combined sewer overflow treatment after 7 and 10 years of operation. Sci. Total. Environ. 2019, 651, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, N.; He, F.; Zhang, Y.; Wu, Z. Application of constructed wetland for water pollution control in China during 1990–2010. Ecol. Eng. 2012, 47, 189–197. [Google Scholar] [CrossRef]
- Abbasi, H.N.; Xu, F.; Lu, X. A Modified Bio-Ecological Process for Rural Wastewater Treatment. Appl. Sci. 2017, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, D.; Dong, J.; Tan, S.K. Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: A review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Liu, H.; Zhao, X.; Peng, S. The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Sci. Total. Environ. 2019, 656, 270–279. [Google Scholar] [CrossRef]
- Maine, M.; Sanchez, G.; Hadad, H.; Caffaratti, S.; Pedro, M.; Mufarrege, M.; Di Luca, G. Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments. Sci. Total. Environ. 2019, 650, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. J. Environ. Manag. 2018, 224, 387–395. [Google Scholar] [CrossRef]
- Peintinger, M.; Bergamini, A.; Schmid, B. Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. Basic Appl. Ecol. 2003, 4, 385–394. [Google Scholar] [CrossRef]
- Zheng, Y.; Dzakpasu, M.; Wang, X.; Zhang, L.; Ngo, H.H.; Guo, W.; Zhao, Y. Molecular characterization of long-term impacts of macrophytes harvest management in constructed wetlands. Bioresour. Technol. 2018, 268, 514–522. [Google Scholar] [CrossRef]
- Erickson, A.J.; Weiss, P.T.; Gulliver, J.S. Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance; Springer Science+Business Media: New York, NY, USA, 2013; pp. 1–337. [Google Scholar]
- Lehikoinen, P.; Lehikoinen, A.; Mikkola-Roos, M.; Jaatinen, K. Counteracting wetland overgrowth increases breeding and staging bird abundances. Sci. Rep. 2017, 7, 41391. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Natuhara, Y. Effect of urbanization on vegetation in riparian area: Plant communities in artificial and semi-natural habitats. Sustainability 2020, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-B.; Hsieh, H.-L.; Yang, L.; Wu, S.-H.; Chang, J.-S.; Hsiao, S.-C.; Su, H.-C.; Yeh, C.-H.; Ho, Y.-S.; Lin, H.-J. Biodiversity of constructed wetlands for wastewater treatment. Ecol. Eng. 2011, 37, 1533–1545. [Google Scholar] [CrossRef]
- Hansson, L.-A.; Brönmark, C.; Nilsson, P.A.; Åbjörnsson, K. Conflicting demands on wetland ecosystem services: Nutrient retention, biodiversity or both? Freshw. Biol. 2005, 50, 705–714. [Google Scholar] [CrossRef]
- Scheffer, M.; Van Geest, G.J.; Zimmer, K.; Jeppesen, E.; Søndergaard, M.; Butler, M.G.; Hanson, M.A.; Declerck, S.; De Meester, L. Small habitat size and isolation can promote species richness: Second-order effects on biodiversity in shallow lakes and ponds. Oikos 2006, 112, 227–231. [Google Scholar] [CrossRef]
- Stephansen, D.A.; Nielsen, A.H.; Hvitved-Jacobsen, T.; Pedersen, M.L.; Vollertsen, J. Invertebrates in stormwater wet detention ponds—Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure. Sci. Total. Environ. 2016, 566, 1579–1587. [Google Scholar] [CrossRef]
- Moore, T.L.; Hunt, W.F. Ecosystem service provision by stormwater wetlands and ponds—A means for evaluation? Water Res. 2012, 46, 6811–6823. [Google Scholar] [CrossRef]
- De Martis, G.; Mulas, B.; Malavasi, V.; Marignani, M. Can Artificial Ecosystems Enhance Local Biodiversity? The Case of a Constructed Wetland in a Mediterranean Urban Context. Environ. Manag. 2016, 57, 1088–1097. [Google Scholar] [CrossRef] [Green Version]
- Semeraro, T.; Giannuzzi, C.; Beccarisi, L.; Aretano, R.; De Marco, A.; Pasimeni, M.R.; Zurlini, G.; Petrosillo, I. A constructed treatment wetland as an opportunity to enhance biodiversity and ecosystem services. Ecol. Eng. 2015, 82, 517–526. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Valentín, A.; Claros, J.; Moreno, L.; Segura, M.; Lassalle, M.; Vera, P. Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecol. Eng. 2018, 113, 74–87. [Google Scholar] [CrossRef]
- Spieles, D.J.; Mitsch, W.J. Macroinvertebrate community structure in high-and low-nutrient constructed wetlands. Wetl. 2000, 20, 716–729. [Google Scholar] [CrossRef]
- Jurado, G.B.; Johnson, J.; Feeley, H.; Harrington, R.; Kelly-Quinn, M. The Potential of Integrated Constructed Wetlands (ICWs) to Enhance Macroinvertebrate Diversity in Agricultural Landscapes. Wetl. 2010, 30, 393–404. [Google Scholar] [CrossRef]
- Korfel, C.A.; Mitsch, W.J.; Hetherington, T.E.; Mack, J.J. Hydrology, physiochemistry, and amphibians in natural and created vernal pool wetlands. Restor. Ecol. 2010, 18, 843–854. [Google Scholar] [CrossRef]
- Andersen, D.C.; Sartoris, J.J.; Thullen, J.S.; Reusch, P.G. The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland. Wetlands 2003, 23, 423–435. [Google Scholar] [CrossRef]
- Fleming-Singer, M.S.; Horne, A.J. Balancing wildlife needs and nitrate removal in constructed wetlands: The case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecol. Eng. 2006, 26, 147–166. [Google Scholar] [CrossRef]
- Mackintosh, T.J.; Davis, J.A.; Thompson, R.M. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands. Sci. Total. Environ. 2015, 536, 527–537. [Google Scholar] [CrossRef]
- Herrmann, J.; Yoshiyama, M. Treating urban stormwater in constructed wetlands in Kalmar, Sweden, for improved water quality and biodiversity. Linnaeus Eco-Tech 2017. [Google Scholar] [CrossRef]
- Strand, J.A.; Weisner, S.E. Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—Experiences from Sweden. Ecol. Eng. 2013, 56, 14–25. [Google Scholar] [CrossRef]
- Sartori, L.; Canobbio, S.; Cabrini, R.; Fornaroli, R.; Mezzanotte, V. Macroinvertebrate assemblages and biodiversity levels: Ecological role of constructed wetlands and artificial ponds in a natural park. J. Limnol. 2014, 73, 73. [Google Scholar] [CrossRef] [Green Version]
- Stanczak, M.; Keiper, J.B. Benthic invertebrates in adjacent created and natural wetlands in northeastern Ohio, USA. Wetlands 2004, 24, 212–218. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Li, Y.; Wu, J. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments. Appl. Microbiol. Biotechnol. 2018, 102, 10755–10765. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhao, X.; Liu, H.; Wu, H. Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater. Bioresour. Technol. 2019, 273, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland. Sci. Total. Environ. 2018, 645, 854–864. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.; Esposito, V.; Porporato, E.; Berto, D.; Renzi, M.; Giacobbe, S.; Scotti, G.; Consoli, P.; Valastro, G.; Andaloro, F.; et al. Relationships between plastic litter and chemical pollutants on benthic biodiversity. Environ. Pollut. 2018, 242, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.; et al. Is habitat fragmentation bad for biodiversity? Boil. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Demi, L.M.; Benstead, J.P.; Rosemond, A.D.; Maerz, J.C. Experimental N and P additions alter stream macroinvertebrate community composition via taxon-level responses to shifts in detrital resource stoichiometry. Funct. Ecol. 2019, 33, 855–867. [Google Scholar] [CrossRef]
- Gülzow, N.; Wahlen, Y.; Hillebrand, H. Metaecosystem Dynamics of Marine Phytoplankton Alters Resource Use Efficiency along Stoichiometric Gradients. Am. Nat. 2019, 193, 35–50. [Google Scholar] [CrossRef]
- Wang, S.; Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 2016, 19, 510–518. [Google Scholar] [CrossRef]
- Sonkoly, J.; Kelemen, A.; Valkó, O.; Deák, B.; Kiss, R.; Tóth, K.; Miglécz, T.; Tóthmérész, B.; Török, P. Both mass ratio effects and community diversity drive biomass production in a grassland experiment. Sci. Rep. 2019, 9, 1848. [Google Scholar] [CrossRef] [Green Version]
- Saggaï, M.M.; Ainouche, A.; Nelson, M.; Cattin, F.; El Amrani, A.; Sagga, M.M. Long-term investigation of constructed wetland wastewater treatment and reuse: Selection of adapted plant species for metaremediation. J. Environ. Manag. 2017, 201, 120–128. [Google Scholar] [CrossRef]
- Stapanian, M.A.; Schumacher, W.; Gara, B.; Monteith, S.E. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands. Sci. Total. Environ. 2016, 551, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Piñeros, M.A.; Martínez-Lavanchy, P.M.; Jehmlich, N.; Pieper, D.H.; Rincón, C.A.; Harms, H.; Junca, H.; Heipieper, H.J. Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation. BMC Microbiol. 2018, 18, 108. [Google Scholar]
- Chen, D.; Gu, X.; Zhu, W.; He, S.; Wu, F.; Huang, J.; Zhou, W. Denitrification- and anammox-dominant simultaneous nitrification, anammox and denitrification (SNAD) process in subsurface flow constructed wetlands. Bioresour. Technol. 2019, 271, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qin, Z.; Xia, L.; Zhang, D.; Hussain, J. Dissipation characteristics of pyrene and ecological contribution of submerged macrophytes and their biofilms-leaves in constructed wetland. Bioresour. Technol. 2018, 267, 158–166. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.; Liu, D.; Hu, Z.; Zhang, J. Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: Dealing with seasonal variation in the north China. Environ. Sci. Pollut. R. 2019, 26, 3675–3684. [Google Scholar] [CrossRef]
- DeCezaro, S.T.; Wolff, D.B.; Araújo, R.K.; Faccenda, H.B.; Perondi, T.; Sezerino, P.H. Vertical flow constructed wetland planted with Heliconia psittacorum used as decentralized post-treatment of anaerobic effluent in Southern Brazil. J. Environ. Sci. Heal. Part A 2018, 53, 1131–1138. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer Science and Business Media LLC: Berlin, Germany, 2008. [Google Scholar]
- Tong, X.; Wang, X.; He, X.; Xu, K.; Mao, F. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland. Sci. Total. Environ. 2019, 656, 503–511. [Google Scholar] [CrossRef]
- Ladislas, S.; Gerente, C.; Chazarenc, F.; Brisson, J.; Andres, Y. Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol. Eng. 2015, 80, 85–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Lyu, T.; Zhang, L.; Button, M.; Arias, C.A.; Weber, K.P.; Shi, J.; Chen, Z.; Brix, H.; Carvalho, P.N. Microbial community metabolic profiles in saturated constructed wetlands treating iohexol and ibuprofen. Sci. Total. Environ. 2019, 651, 1926–1934. [Google Scholar] [CrossRef] [Green Version]
- Francini, A.; Mariotti, L.; Di Gregorio, S.; Sebastiani, L.; Andreucci, A. Removal of micro-pollutants from urban wastewater by constructed wetlands with Phragmites australis and Salix matsudana. Environ. Sci. Pollut. Res. 2018, 25, 36474–36484. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci. Total. Environ. 2018, 645, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 2016, 27, 646–653. [Google Scholar] [CrossRef]
- Duffy, J.E.; Godwin, C.M.; Cardinale, B.J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 2017, 549, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Reich, P.B.; Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. PNAS 2012, 109, 10394–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanin, N.; Gundale, M.J.; Farrell, M.; Ciobanu, M.; Baldock, J.A.; Nilsson, M.; Kardol, P.; Wardle, D.A. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2018, 2, 269–278. [Google Scholar] [CrossRef]
- Karanika, E.D.; Alifragis, D.A.; Mamolos, A.P.; Veresoglou, D.S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 2007, 297, 69–81. [Google Scholar] [CrossRef]
- Fornara, D.A.; Tilman, D. Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology 2009, 90, 408–418. [Google Scholar] [CrossRef]
- Zhang, C.-B.; Wang, J.; Liu, W.-L.; Zhu, S.-X.; Liu, N.; Chang, S.X.; Chang, J.; Ge, Y. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 2010, 101, 1686–1692. [Google Scholar] [CrossRef]
- Geng, Y.; Han, W.; Yu, C.; Jiang, Q.; Wu, J.; Chang, J.; Ge, Y. Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecol. Eng. 2017, 107, 110–119. [Google Scholar] [CrossRef]
- Zhu, S.-X.; Zhang, P.; Wang, H.; Ge, H.-L.; Chang, J.; Chang, S.; Qiu, Z.; Shao, H.; Ge, Y. Plant Species Richness Affected Nitrogen Retention and Ecosystem Productivity in a Full-Scale Constructed Wetland. CLEAN Soil, Air, Water 2012, 40, 341–347. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Byrnes, J.E.K.; Isbell, F.; Gamfeldt, L.; Griffin, J.N.; Eisenhauer, N.; Hensel, M.J.S.; Hector, A.; Cardinale, B.J.; Duffy, J.E. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 2015, 6, 6936. [Google Scholar] [CrossRef] [PubMed]
- Schuldt, A.; Assmann, T.; Brezzi, M.; Buscot, F.; Eichenberg, D.; Gutknecht, J.; Härdtle, W.; He, J.-S.; Klein, A.-M.; Kühn, P.; et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 2018, 9, 2989. [Google Scholar] [CrossRef] [Green Version]
- Brose, U.; Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B Boil. Sci. 2016, 371, 20150267. [Google Scholar] [CrossRef] [Green Version]
- Soliveres, S.; Van Der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C.; Alt, F.; Arndt, H.; Baumgartner, V.; Binkenstein, J.; et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 2016, 536, 456–459. [Google Scholar] [CrossRef]
- Gifford, S.; Dunstan, R.H.; O’Connor, W.; Koller, C.E.; Macfarlane, G.R. Aquatic zooremediation: Deploying animals to remediate contaminated aquatic environments. Trends Biotechnol. 2007, 25, 60–65. [Google Scholar] [CrossRef]
- Kang, Y.; Xie, H.; Zhang, J.; Zhao, C.; Wang, W.; Guo, Y.; Guo, Z. Intensified nutrients removal in constructed wetlands by integrated Tubifex tubifex and mussels: Performance and mechanisms. Ecotoxicol. Environ. Saf. 2018, 162, 446–453. [Google Scholar] [CrossRef]
- Gonçalves, A.F.; Castro, L.F.C.; Pereira-Wilson, C.; Coimbra, J.; Wilson, J.M. Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguillicaudatus, an intestinal air-breathing fish? Comp. Biochem. Physiol. Part D Genom. Proteom. 2007, 2, 345–355. [Google Scholar] [CrossRef]
- Smith, S.M.; Green, C.W. Sediment suspension and elevation loss triggered by atlantic mud fiddler Crab (Uca pugnax) bioturbation in salt marsh dieback areas of southern New England. J. Coast. Res. 2013, 88–94. [Google Scholar] [CrossRef]
- Christianen, M.J.A.; Govers, L.L.; Bouma, T.J.; Kiswara, W.; Roelofs, J.G.M.; Lamers, L.P.M.; van Katwijk, M.M. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. J. Ecol. 2012, 100, 546–560. [Google Scholar] [CrossRef]
- Saharimoghaddam, N.; Massoudinejad, M.; Ghaderpoori, M. Removal of pollutants (COD, TSS, and NO3−) from textile effluent using Gambusia fish and Phragmites australis in constructed wetlands. Environ. Geochem. Health 2019, 41, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Su, F.; Brown, M.T.; Liu, H.; Wang, T. Assessment of Ecosystem Service Value of the Liaohe Estuarine Wetland. Appl. Sci. 2018, 8, 2561. [Google Scholar] [CrossRef] [Green Version]
- Bolpagni, R.; Piotti, A. The importance of being natural in a human-altered riverscape: Role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Aquat. Conserv. 2016, 26, 1168–1183. [Google Scholar] [CrossRef]
- Mulkeen, C.; Gibson-Brabazon, S.; Carlin, C.; Williams, C.; Healy, M.; Mackey, P.; Gormally, M. Habitat suitability assessment of constructed wetlands for the smooth newt (Lissotriton vulgaris [Linnaeus, 1758]): A comparison with natural wetlands. Ecol. Eng. 2017, 106, 532–540. [Google Scholar] [CrossRef]
- Grimm, M.; Köppel, J. Biodiversity Offset Program Design and Implementation. Sustainability 2019, 11, 6903. [Google Scholar] [CrossRef] [Green Version]
- Bockelmann, A.-C.; Bakker, J.P.; Neuhaus, R.; Lage, J. The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquat. Bot. 2002, 73, 211–221. [Google Scholar] [CrossRef]
- Keddy, P.A. Wetland Ecology, Principles and Conservation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 67–75. [Google Scholar]
- Naiman, R.J.; Décamps, H.; Pollock, M. The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands. Constr. Wetl. 2008. [Google Scholar]
- Martinez-Carvajal, G.; Oxarango, L.; Adrien, J.; Molle, P.; Forquet, N. Assessment of X-ray Computed Tomography to characterize filtering media from Vertical Flow Treatment Wetlands at the pore scale. Sci. Total. Environ. 2019, 658, 178–188. [Google Scholar] [CrossRef]
- Tanner, C.C. Plants for constructed wetland treatment systems—A comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. 1996, 7, 59–83. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Gutrich, J.J.; Taylor, K.J.; Fennessy, M.S. Restoration of vegetation communities of created depressional marshes in Ohio and Colorado (USA): The importance of initial effort for mitigation success. Ecol. Eng. 2009, 35, 351–368. [Google Scholar] [CrossRef]
- Waajen, G.W.; Van Bruggen, N.C.; Pires, L.M.D.; Lengkeek, W.; Lürling, M. Biomanipulation with quagga mussels (Dreissena rostriformis bugensis) to control harmful algal blooms in eutrophic urban ponds. Ecol. Eng. 2016, 90, 141–150. [Google Scholar] [CrossRef]
- Stefanik, K.C.; Mitsch, W.J. Vegetation productivity of planted and unplanted created riverine wetlands in years 15–17. Ecol. Eng. 2017, 108, 425–434. [Google Scholar] [CrossRef]
- Vonlanthen, P.; Bittner, D.; Hudson, A.G.; Young, K.A.; Muller, R.; Lundsgaard-Hansen, B.; Roy, D.; Di Piazza, S.; Largiadèr, C.R.; Seehausen, O. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 2012, 482, 357–362. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Wallentinus, I.; Zenetos, A.; Leppäkoski, E.; Çinar, M.E.; Öztürk, B.; Grabowski, M.; Golani, D.; Cardoso, A.C. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 2014, 9, 391–423. [Google Scholar] [CrossRef]
- Kalogirou, S. Ecological characteristics of the invasive pufferfish Lagocephalus sceleratus (Gmelin, 1789) in the eastern Mediterranean Sea – a case study from Rhodes. Mediterr. Mar. Sci. 2013, 14, 251. [Google Scholar] [CrossRef] [Green Version]
- Zala, S.M.; Penn, D.J. Abnormal behaviours induced by chemical pollution: A review of the evidence and new challenges. Anim. Behav. 2004, 68, 649–664. [Google Scholar] [CrossRef]
- Cody, M.L. Habitat selection in birds; Academic Press: Orlando, FL, USA, 1985; pp. 519–525. [Google Scholar]
- Sievers, M.; Hale, R.; Swearer, S.E.; Parris, K.M. Frog occupancy of polluted wetlands in urban landscapes. Conserv. Biol. 2018, 33, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Sievers, M.; Parris, K.M.; Swearer, S.E.; Hale, R. Stormwater wetlands can function as ecological traps for urban frogs. Ecol. Appl. 2018, 28, 1106–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snodgrass, J.W.; Casey, R.E.; Joseph, D.; Simon, J.A. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: Variation in sensitivity among species. Environ. Pollut. 2008, 154, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.T.; Snodgrass, J.W.; Brand, A.B.; Casey, R.E.; Lev, S.M.; Van Meter, R.J. The role of pollutant accumulation in determining the use of stormwater ponds by amphibians. Wetl. Ecol. Manag. 2014, 22, 551–564. [Google Scholar] [CrossRef]
- Sievers, M.; Hale, R.; Parris, K.M.; Swearer, S.E. Impacts of human-induced environmental change in wetlands on aquatic animals. Biol. Rev. 2018, 93, 529–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, R.; Coleman, R.; Sievers, M.; Brown, T.R.; Swearer, S.E. Using conservation behavior to manage ecological traps for a threatened freshwater fish. Ecosphere 2018, 9, e02381. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.K.; Jensen, P.; Dolph, C.L.; Holyoak, M.; Trust, K.A. Multiple stressors and the cause of amphibian abnormalities. Ecol. Monogr. 2010, 80, 423–440. [Google Scholar] [CrossRef]
- Edge, C.; Thompson, D.; Hao, C.; Houlahan, J. The response of amphibian larvae to exposure to a glyphosate-based herbicide (Roundup WeatherMax) and nutrient enrichment in an ecosystem experiment. Ecotoxicol. Environ. Saf. 2014, 109, 124–132. [Google Scholar] [CrossRef]
- Brown, T.R.; Coleman, R.A.; Swearer, S.E.; Hale, R. Behavioral responses to, and fitness consequences from, an invasive species are life-stage dependent in a threatened native fish. Boil. Conserv. 2018, 228, 10–16. [Google Scholar] [CrossRef]
- Sievers, M.; Hale, R.; Swearer, S.E.; Parris, K.M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 2018, 161, 482–488. [Google Scholar] [CrossRef]
- Laetz, C.A.; Baldwin, D.H.; Hebert, V.R.; Stark, J.D.; Scholz, N.L. Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon. Aquat. Toxicol. 2014, 146, 38–44. [Google Scholar] [CrossRef]
- Karraker, N.E.; Gibbs, J.P. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches. Environ. Pollut. 2011, 159, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Mikó, Z.; Ujszegi, J.; Hettyey, A. Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo). Aquat. Toxicol. 2017, 187, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Mikó, Z.; Ujszegi, J.; Gál, Z.; Hettyey, A. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. Ecotoxicol. Environ. Saf. 2017, 140, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Denoël, M.; Libon, S.; Kestemont, P.; Brasseur, C.; Focant, J.-F.; De Pauw, E. Effects of a sublethal pesticide exposure on locomotor behavior: A video-tracking analysis in larval amphibians. Chemosphere 2013, 90, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, S.E.; Pereira, M.G.; Shore, R.F.; Lane, J.; Arnold, K.E. Environmentally relevant exposure to an antidepressant alters courtship behaviours in a songbird. Chemosphere 2018, 211, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.; Chivers, D.P.; Ferrari, M.C.O. Sub-lethal effects of Roundup™ on tadpole anti-predator responses. Ecotox. Environ. Safe 2015, 111, 281–285. [Google Scholar] [CrossRef]
- Mateos, D.M.; Comín, F. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes. J. Environ. Manag. 2010, 91, 2087–2095. [Google Scholar] [CrossRef]
- Harris-Lovett, S.; Lienert, J.; Sedlak, D. A mixed-methods approach to strategic planning for multi-benefit regional water infrastructure. J. Environ. Manag. 2019, 233, 218–237. [Google Scholar] [CrossRef]
- Sharley, D.J.; Sharp, S.M.; Jeppe, K.; Pettigrove, V.J.; Marshall, S. Linking urban land use to pollutants in constructed wetlands: Implications for stormwater and urban planning. Landsc. Urban Plan. 2017, 162, 80–91. [Google Scholar] [CrossRef]
- Yan, Y.; Guan, Q.; Wang, M.; Su, X.; Wu, G.; Chiang, P.; Cao, W. Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River Watershed, China. Mar. Pollut. Bull. 2018, 133, 349–356. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, J.; Liu, X.; Xue, B.; Wang, S. Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes. Water Res. 2018, 132, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Jurado, G.; Harrington, R.; Kelly-Quinn, M. A review of the potential of surface flow constructed wetlands to enhance macroinvertebrate diversity in agricultural landscapes with particular reference to Integrated Constructed Wetlands (ICWs). Hydrobiologia 2012, 692, 121–130. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Zhang, L.; Stefanik, K.C.; Nahlik, A.M.; Anderson, C.J.; Bernal, B.; Hernandez, M.; Song, K. Creating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years. Biosci. 2012, 62, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Wiegleb, G.; Dahms, H.-U.; Byeon, W.I.; Choi, G. To What Extent Can Constructed Wetlands Enhance Biodiversity? Int. J. Environ. Sci. Dev. 2017, 8, 561–569. [Google Scholar] [CrossRef] [Green Version]
Country/Region | Biota Studied | Wastewater Treated | Main Findings | Reference |
---|---|---|---|---|
USA | Invertebrates | Secondarily treated domestic wastewater and low-nutrient river water | A total of 36 and 39 macroinvertebrate taxa were collected in the wastewater wetland and river wetland, respectively. Average diel dissolved oxygen and specific conductivity were the best environmental predictors of invertebrate community metrics. | [58] |
Ireland | Macroinvertebrates | Agricultural runoff | The last ponds in the chain of these integrated constructed wetland (ICW) systems are capable of supporting a similar number of taxa as natural ponds. | [59] |
USA | Amphibians | Surface run-off and groundwater | The created pools exhibited higher taxa diversity than natural pools due to a more even distribution of organisms between the three families. | [60] |
USA | Birds | Municipal wastewater | A total of 63, 48, and 68 species were noted during the 1995– 96, 1998, and 2000–2001 monitoring periods, respectively. | [61] |
USA (California) | Birds | Surface run-off and groundwater | Average avian species richness was high, ranging between 65 and 76 species month−1, while average relative abundance was moderate, at 65–83 birds ha−1 month−1. Birds observed included both common and rare species. | [62] |
USA | Amphibians, aquatic reptiles, aquatic insects, mollusks, and crayfish | Urban stormwater | Urban wetlands supported a 60% lower richness of amphibians and aquatic reptiles and a 33% lower richness of aquatic insects, mollusks, and crayfish. | [21] |
Sweden | Vegetation and benthic invertebrates | Stormwater | There was a tendency for common species to be dominant and for less common species to be rare. | [19] |
Australia | Macroinvertebrates | Urban stormwater | There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates in western sites but not in south-eastern sites. | [63] |
China | Birds, fish, and macroinvertebrate | Surface run-off and groundwater | A total of 58 bird species, 7 fish species, and 34 aquatic macroinvertebrate taxa were recorded in the two wetlands. Variations in the community structures of birds, fish, and aquatic macroinvertebrates were best explained by water temperature, wetland area, and the species richness of fish. | [50] |
Denmark | Invertebrates | Stormwater | Stormwater wet detention ponds (SWDP) become aquatic environments that play a local role for biodiversity in a similar way to natural small and shallow lakes. | [53] |
USA | Macroinvertebrates | Stormwater | Constructed stormwater ponds and constructed stormwater wetlands supported similar levels of macroinvertebrate diversity, although community composition was variable. | [54] |
Italy | Vegetation | Surface run-off and groundwater | The flora of the EcoSistema Filtro (ESF) accounted for 54% of Regional Park’s flora. This these species, 12% were alien and 6% of the taxa are of conservation concern. | [55] |
Italy | Vegetation, amphibians, reptiles, birds, mammals | Effluent water from a sewage treatment plant | An increase in the number of plants was observed compared to the start-up phase of the constructed treatment wetland (CTW). A greater abundance of birds (73 species) than mammals (6 species), reptiles (3 species), and amphibians (4 species) was highlighted. | [56] |
Spain | Birds | Surface run-off and groundwater | Almost 50% of the waterfowl species visiting the zone were of special conservation concern. Differences in vegetation structure between subunits drove the selection of stopover sites for migratory species. | [57] |
Sweden | benthic invertebrates, aquatic plants and birds | Urban stormwater | CWs are shown to favour the biodiversity of benthic invertebrates, aquatic plants and birds, although biodiversity trends to decline some years after the initial colonization period | [64] |
Sweden | benthic invertebrates, birds, vegetation, amphibians and fish | Agricultural runoff | Species richness varied among the wetlands, with a mean of 34 species of benthic invertebrates, 34 species of macrophytes, 5 species of bird per wetland | [51] |
Sweden | wetland birds and amphibians | Agricultural runoff | Wetland birds and amphibians colonized constructed wetlands irrespective of the original objective of the wetland. The mean maximum breeding bird species number in the wetlands occurred after 3.8 years. | [65] |
Italy | Macroinvertebrates | wastewater from the mixed sewer system of a hamlet | Although differences in the composition of macroinvertebrate assemblages, the overall level of biodiversity was comparable between CWs and natural ponds | [66] |
USA | Benthic invertebrates | Surface run-off and groundwater | Taxa richness, evenness, and community similarity were comparable between CWs and adjacent natural ponds | [67] |
Study Focus | Country | Ecosystem | Biota Studied | Contaminants | Main Findings | Reference |
---|---|---|---|---|---|---|
Habitat selection | Australia | Urban stormwater treatment wetlands | Native frogs and fish | Macrophyte cover, zooplankton densities, the occurrence of the invasive eastern mosquitofish (Gambusia holbrooki), and the fitness and survival of G. pusilla tadpoles were lower at more polluted sites. | [18] | |
Australia | Urban wetland | Frogs | Heavy metals and pesticides | Frogs inhabited wetlands with abundant vegetation, regardless of their pollution status. | [130] | |
Australia | Stormwater wetland | Frogs (Litoria raniformis) | Heavy metals and pesticides | Breeding adults laid comparable numbers of eggs across wetlands with high and low contaminant levels. Tadpoles had lower survival rates and were less responsive to predator olfactory cues when raised in more polluted stormwater wetlands, but also reached metamorphosis earlier and reached a larger size. | [131] | |
Australia | Stormwater and non-stormwater wetlands | Dwarf galaxias (Galaxiella pusilla) | Fish did not avoid stormwater wetlands that reduce their survival and delay their ovarian maturation. | [135] | ||
USA | 21 wetlands on the Kenai National Wildlife Refuge | Wood frogs (Rana sylvatica) | Both predators and contaminants altered ecosystem dynamics to increase the frequency of amphibian abnormalities in contaminated habitats. | [136] | ||
USA | Stormwater ponds | Amphibians | Trace metals in sediment and Cl concentrations in surface waters | Pollutants appear to limit stormwater pond use by R. sylvatica but not by American toads (Anaxyrus americanus). | [133] | |
USA (California) | Wetlands | Green frog larvae (Lithobates clamitans) | Glyphosate-based herbicide, Roundup WeatherMax™ and nutrient enrichment | The abundance of green frog larvae (Lithobates clamitans) was higher in the wetlands treated with herbicide and nutrients. | [137] | |
Effects of contaminants on wildlife | Australia | Dwarf galaxias (G. pusilla) | Invasive G. holbrooki | The invasive species reduced reproduction rates and consumed the larvae of G. pusilla. | [138] | |
Australia | Spotted marsh frogs (Limnodynastes tasmaniensis) tadpoles | Copper and the insecticide imidacloprid | The swimming speed, distance, and escape response of L. tasmaniensis were reduced while erratic swimming behavior increased. | [139] | ||
USA | Stormwater pond | Amphibians | Metals in sediment and chloride in water | Intolerant R. sylvatica embryos showed a 100% mortality rate. Tolerant B. americanus embryos and larvae experienced sub-lethal effects. | [132] | |
USA | Juvenile coho salmon (Oncorhynchus kisutch) | Ethoprop and malathion | Brain acetylcholinesterase activity and liver carboxylesterase were inhabited. | [140] | ||
USA | Spotted salamanders (Ambystoma maculatum) | Chloride | Osmoregulation of egg clutches was disrupted and lost 33% mass under high concentrations. | [141] | ||
Hungary | Common toads (Bufo bufo) | Pesticides | Tadpoles exposed to herbicides developed slower. | [142] | ||
Hungary | Agile frogs (R. dalmatina) | Herbicides | Tadpoles decreased their activity and remaining closer to the water surface. | [143] | ||
Belgium | Common frogs (R. temporaria) | Endosulfan | Contaminated tadpoles traveled shorter distances, swam less often and at a lower mean speed, and occupied a less peripherical positions. | [144] | ||
UK | Common starlings (Sturnus vulgaris | Fluoxetine | Exposure reduced female attractiveness. | [145] | ||
USA (California) | Wood frogs (R. sylvatica) | Roundup™ | Tadpoles had reduced basal movement rates. | [146] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wen, L.; Wang, Y.; Liu, C.; Zhou, Y.; Lei, G. Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. Sustainability 2020, 12, 1442. https://doi.org/10.3390/su12041442
Zhang C, Wen L, Wang Y, Liu C, Zhou Y, Lei G. Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. Sustainability. 2020; 12(4):1442. https://doi.org/10.3390/su12041442
Chicago/Turabian StyleZhang, Chengxiang, Li Wen, Yuyu Wang, Cunqi Liu, Yan Zhou, and Guangchun Lei. 2020. "Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value" Sustainability 12, no. 4: 1442. https://doi.org/10.3390/su12041442
APA StyleZhang, C., Wen, L., Wang, Y., Liu, C., Zhou, Y., & Lei, G. (2020). Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. Sustainability, 12(4), 1442. https://doi.org/10.3390/su12041442