Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Respondents
2.2. Farming Practices, Agriculture Revenue, and Operation Cost
2.3. Classification of Crop Pollination Dependency
2.4. Data Analysis
3. Results
3.1. Farming System
3.2. Pollinator Dependency for Food Production and Household Income
3.3. Knowledge of Insect Pollinators and Pollination
3.4. Experiences in Yield Decline within Ten Years and Reasons
4. Discussion
4.1. Local Farmers and Farming Systems
4.2. Household Income and Pollinator Dependency
4.3. Household Food Production and Pollinator Dependency
4.4. Pollinators Awareness
4.5. Pollinators Conservation
4.6. Management Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Questionnaire used in interviews of 147 local farmers in the Kilimanjaro and Arusha regions in northeast Tanzania, after the 2018 crop growing season. The interviews were conducted by graduates acquainted with Swahili language.
- Questionnaire
- Enumerators name …………………………..
- Part I
- I.
- Full Name: ……………. Date: ………………………………
- II.
- Village name: ……………………. Ward …………………….. District: ………………..
- III.
- Age: ………………………….. Sex: ……………………
- IV.
- Education: ……………………..
- V.
- Number of persons that lived in your house: …………………………
- Part II
- VI.
- Total income earned last year: ……………………………….
- VII.
- Percentage of income coming from agricultural production (crop production) ……………….
- VIII.
- Further income sources besides agricultural production (crop production) ……………………
- IX.
- Field size ……………………………
- X.
- Which crops do you grow ……………………………?
- XI.
- Cost for associated with each crop and the market price………………….
- XII.
- Are you practicing Monoculture or mixed culture ………………………………………?
- XIII.
- Percentage of production sold on the market in 2018 ……………………………………
- XIV.
- Is there any change in the yield in the crops you grow? …………………………………………
- XV.
- How do you know crops yields are changing? …………………………………………………
- XVI.
- Why are crop yields changing? ………………………………………………………………..
- XVII.
- Do you know pollinators or any beneficial insects visiting your plants? ……………………….
- XVIII.
- Do you know their roles? ………………………………….
- XIX.
- Which crops do they visit? ………………………………………….
- XX.
- What are the most insects visiting insects on your crops? …………………………………..
- XXI.
- Do crops need pollination? ………………………………………………….
- XXII.
- Why do you think crops need pollinators? …………………………………….
- XXIII.
- How do you know? ……………………………………………………………
- XXIV.
- Would it be useful to have more pollinators? …………………………………..
- XXV.
- In your opinion, how could their abundance be increased? ………………………………..
- XXVI.
- What practice do you use to conserve pollinators? ………………………………………..
- XXVII.
- Do you practice conservation agriculture/pollinator management? ……………………………
- Mixed farming/agroforestry
- Hedgerow farming
- Bee keeping
Appendix B
Crop Name | Number of Farmers | Pollination Dependency | Average Field Size in Ha | Average % HH Income Contribution |
---|---|---|---|---|
Amaranthus (Amaranthus sp.) | 23 | No | 0.41 (0.20) | 0.17 |
Avocado (Perseaamericana) | 4 | Great | 0.38 (0.14) | 1.02 |
Banana (Musa sp.) | 35 | No | 0.74 (1.12) | 0.13 |
Beans (Phaseolu sp.) | 53 | Little | 1.08 (0.83) | 0.46 |
Bitter tomatoes (Solanum aethiopicum) | 69 | Modest | 0.33 (0.19) | 4.55 |
Cabbage (Brassica sp.) | 44 | No | 0.34 (0.15) | 1.3 |
Cantaloupe (Cucumis melo) | 5 | Essential | 0.60 (0.52) | 0.7 |
Carrots (Daucus carota) | 4 | No | 0.56 (0.13) | 1.55 |
Cassava (M.esculenta) | 1 | No | 0.25 (0.12) | 0.04 |
Chilli (various chilli) | 5 | Little | 0.25 (0.00) | 0.13 |
Coffee (Coffee arabica) | 3 | Modest | 0.83 (0.29) | 0.35 |
Cucumber (Cucumis sativus) | 62 | Great | 0.71 (0.26) | 3.8 |
Eggplant (Solanum melongena) | 80 | Modest | 0.32 (0.19) | 0.79 |
Maize (Zea mays) | 143 | No | 3.31 (1.10) | 32.82 |
Mangoes (Mangifera indica) | 13 | Great | 0.50 (0.35) | 0.04 |
Okra (Abelmoschus esculentus) | 22 | Modest | 0.34 (0.23) | 0.22 |
Onions (Allium cepa) | 31 | No | 0.80 (0.22) | 2.49 |
Oranges (Citrus sinensis) | 16 | Little | 0.42 (0.31) | 0.01 |
Paprika (Capsicum sp.) | 10 | Little | 0.30 (0.11) | 0.29 |
Passion (Passiflora edulis) | 3 | Essential | 0.75 (0.66) | 0.02 |
Peas (Pisum sativum) | 6 | Little | 0.79 (0.33) | 0.81 |
Irish potatoes (Solanum tuberosum) | 4 | No | 0.94 (0.77) | 0.21 |
Pumpkin (Cucurbita pepo) | 2 | Essential | 0.50 (0.01) | 0.05 |
Rice (Oryza sativa) | 20 | No | 0.86 (0.38) | 2.4 |
Sorghum (Sorghum bicolor) | 14 | No | 1.09 (0.52) | 2.6 |
Spinach (Lactuca sativa) | 63 | No | 0.33 (0.17) | 1.85 |
Squash (Cucurbita pepo) | 5 | Essential | 0.70 (0.45) | 0.57 |
Sunflower (Helianthus sp.) | 23 | Modest | 1.23 (0.64) | 1.76 |
Sweet potatoes (Ipomoea batatas) | 8 | No | 0.59 (0.30) | 0.15 |
Tomatoes (Solanum lycopersicum) | 103 | Little | 0.67 (0.25) | 14.43 |
Watermelon (Citrullus lanatus) | 93 | Essential | 0.57 (0.22) | 24.29 |
References
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Bianchi, F.J.; Booij, C.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.K. A future for small farms? Biodiversity and sustainable agriculture. In Human Development in the Era of Globalization: Essays in Honor of Keith B. Griffin; FAO: Rome, Italy, 2006; pp. 83–104. [Google Scholar]
- Kok, M.T.; Kok, K.; Peterson, G.D.; Hill, R.; Agard, J.; Carpenter, S. Biodiversity and ecosystem services require IPBES to take novel approach to scenarios. Sustain. Sci. 2017, 12, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batáry, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 2016, 55, 43–97. [Google Scholar]
- Quintana, C.; Girardello, M.; Balslev, H.J.P. Balancing plant conservation and agricultural production in the Ecuadorian Dry Inter-Andean Valleys. PeerJ 2019, 7, e6207. [Google Scholar] [CrossRef] [PubMed]
- Simons, N.K.; Weisser, W.W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. 2017, 1, 1136. [Google Scholar] [CrossRef]
- Weiser, M.D.; Michaletz, S.T.; Buzzard, V.; Deng, Y.; He, Z.; Shen, L.; Enquist, B.J.; Waide, R.B.; Zhou, J.; Kaspari, M. Toward a theory for diversity gradients: The abundance-adaptation hypothesis. Ecography 2018, 41, 255–264. [Google Scholar] [CrossRef]
- Malmborg, K.; Sinare, H.; Enfors Kautsky, E.; Ouedraogo, I.; Gordon, L.J. Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel. PLoS ONE 2018, 13, e0192019. [Google Scholar] [CrossRef]
- Wisely, S.M.; Alexander, K.; Cassidy, L. Linking ecosystem services to livelihoods in southern Africa. Ecosyst. Serv. 2018, 30, 339–341. [Google Scholar] [CrossRef]
- Steward, P.R.; Shackelford, G.E.; Sait, S.M. Pollination and biological control research: Are we neglecting two billion smallholders. Agric. Food Secur. 2014, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- IPBES. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. In Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Potts, S.G., Ngo, H.T., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., Eds.; IPBES: Bonn, Germany, 2016. [Google Scholar]
- Eilers, E.J.; Kremen, C.; Smith Greenleaf, S.; Garber, A.K.; Klein, A.M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 2011, 6, e21363. [Google Scholar] [CrossRef] [PubMed]
- Gallai, N.; Salles, J.; Settele, J.; Vaissièrea, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Dombeck, E.; Gerber, J.; Knuth, K.A.; Mueller, N.D.; Mueller, M.; Ziv, G.; Klein, A. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B 2014, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwalla, N.; el Labban, S.; Bahn, R.A. Nutrition security is an integral component of food security. Front. Life Sci. 2016, 9, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Singh, G.M.; Mozaffarian, D.; Myers, S.S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 2015, 386, 1964–1972. [Google Scholar] [CrossRef]
- Marshman, J.; Blay-Palmer, A.; Landman, K. Anthropocene Crisis: Climate Change, Pollinators, and Food Security. Environments 2019, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Barbir, J. Managing Semi-natural Habitats of Pollinators within Agro-ecosystems. Entomol. Ornithol. Herpetol. 2016, 5, 171. [Google Scholar] [CrossRef] [Green Version]
- Kassie, G.W. Agroforestry and farm income diversification: Synergy or trade-off? The case of Ethiopia. Environ. Syst. Res. 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Waha, K.; van Wijk, M.T.; Fritz, S.; See, L.; Thornton, P.K.; Wichern, J.; Herrero, M. Agricultural diversification as an important strategy for achieving food security in Africa. Glob. Chang. Biol. 2018, 24, 3390–3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.; Marita, C.; Musiime, D. National Survey and Segmentation of Smallholder Households in Tanzania; CGAP: Washington, DC, USA, 2016. [Google Scholar]
- FAO. The United Republic of Tanzania Resilience Strategy 2019–2022; FAO: Rome, Italy, 2019. [Google Scholar]
- Bergius, M.; Benjaminsen, T.A.; Widgren, M. Green economy, Scandinavian investments and agricultural modernization in Tanzania. J. Peasant Stud. 2018, 45, 825–852. [Google Scholar] [CrossRef]
- Pieterse, P.M. Tech for Governance Programmes in Tanzania—(How) Can Tech Be Used to Promote Good Governance in the Magufuli Era? IDS: Brighton, UK, 2017. [Google Scholar]
- Laizer, H.C.; Chacha, M.N.; Ndakidemi, P.A. Farmers’ Knowledge, Perceptions and Practices in Managing Weeds and Insect Pests of Common Bean in Northern Tanzania. Sustainability 2019, 11, 4076. [Google Scholar] [CrossRef] [Green Version]
- Kasina, J.; Mburu, J.; Kraemer, M.; Holm-Mueller, K. Economic benefit of crop pollination by bees: A case of Kakamega small-holder farming in western Kenya. J. Econ. Entomol. 2009, 102, 467–473. [Google Scholar] [CrossRef]
- Sawe, T.; Nielsen, A.; Sydenhman, M.; Venter, S.; Totland, O.; Samora, M.; Eledegard, K. Tree cover, wild floral resources and pesticide affect crop pollination and yiled in small-scale agroforestry system in Tanzania. Ecosphere 2020. under review. [Google Scholar]
- Huryn, V.M.B.J.T. Ecological impacts of introduced honey bees. Q. Rev. Biol. 1997, 72, 275–297. [Google Scholar]
- Michener, C.D. The Bees of the World; JHU Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Kuivanen, K.; Alvarez, S.; Michalscheck, M.; Adjei-Nsiah, S.; Descheemaeker, K.; Mellon-Bedi, S.; Groota, J.C.J. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAC 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Mkonda, M.Y.; He, X.H. Climate variability and crop yields synergies in Tanzania’s semiarid agroecological zone. Ecosyst. Health Sustain. 2018, 4, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Riggio, J.; Jacobson, A.P.; Hijmans, R.J.; Caroa, T. How effective are the protected areas of East Africa? Glob. Ecol. Conserv. 2019, 17, e00573. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Adjognon, S.G.; Liverpool-Tasie, L.S.O.; Reardon, T.A. Agricultural input credit in Sub-Saharan Africa: Telling myth from facts. Food Policy 2017, 67, 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, S.G. The Kilimanjaro Native Planters Association: Administrative Responses to Chagga Initiatives in the 1920’s. Trans. J. Hist. 1974, 4, 94. [Google Scholar]
- Mhando, D.G.; Mbeyale, G. An Analysis of the Coffee Value Chain in the Kilimanjaro Region, Tanzania; NCCR: Bern, Switzerland, 2010. [Google Scholar]
- Ruoja, C.S. The contribution of coffee exportation on poverty reduction in Tanzania. Int. J. Econ. Commer. Manag. 2016, IV, 551–559. [Google Scholar]
- Segerstrom, T.M. Global Climate Change, Fair Trade, and Coffee Price Volatility. Gettysbg. Econ. Rev. 2016, 9, 6. [Google Scholar]
- Magina, F.; Makundi, R.H.; Maerere, A.P.; Maro, G.P.; Teri, J.M. Temporal Variations in the Abundance of Three Important Insect Pests of Coffee in Kilimanjaro Region, Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2009. [Google Scholar]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Clim. Chang. 2019, 152, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A. International trade drives biodiversity threats in developing nations. Nature 2012, 486, 109. [Google Scholar] [CrossRef]
- Sambuoa, D.; Mbwagab, A. Challenges of Coffee Price Fluctuations and Sustainability of Agricultural Marketing Co-Operatives in Tanzania: Experience from Mbozi and Rombo Districts. Noble Int. J. Econ. Financ. Res. 2017, 2, 140–151. [Google Scholar]
- Katega, I.; Hyandye, C.; Miyonga, M. Contributing factors to decline of coffee production in Muleba district: A case of Makarwe village in Buleza ward. IJRCE 2014, 4, 85–89. [Google Scholar]
- Delaplane, K.S.; Mayer, D.R.; Mayer, D.F. Crop Pollination by Bees; Cabi: Warringford, UK, 2000. [Google Scholar]
- Lubinsky, P.; van Dam, M.; van Dam, A.J.L. Pollination of Vanilla and evolution in Orchidaceae. Lindleyana 2006, 75, 926–929. [Google Scholar]
- Sawe, T.; Nielsen, A.; Totland, Ø.; Macrice, S.; Eldegard, K. Inadequate pollination services limit watermelon yields in northern Tanzania. Basic Appl. Ecol. 2020, 44, 35–45. [Google Scholar] [CrossRef]
- Chand, R.; Prasanna, P.L.; Singh, A.J.E.; Weekly, P. Farm size and productivity: Understanding the strengths of smallholders and improving their livelihoods. Econ. Political Wkly. 2011, 46, 5–11. [Google Scholar]
- Myeni, L.M.; Thavhana, M.; Randela, M.; Mokoena, L. Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa. Sustainability 2019, 11, 3003. [Google Scholar] [CrossRef] [Green Version]
- Makuya, V.; Ndyetabula, D.; Mpenda, Z. Cost efficiency of watermelon production in Tanzania. Int. Assoc. Agric. Econ. 2018. [Google Scholar] [CrossRef]
- Hass, A.L.; Kormann, U.G.; Tscharntke, T.; Clough, Y.; Baillod, A.B.; Sirami, C.; Fahrig, L.; Martin, J.L.; Baudry, J.; Bertrand, C.; et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. Biol. Sci. 2018, 285, 1872. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [Green Version]
- Minot, N. Promoting a Strong Seed Sector in Sub-Saharan Africa; IFPRI: Washington, WD, USA, 2008. [Google Scholar]
- Lynam, J.; Gilbert, E.; Elliot, H. Evolving a Plant Breeding and Seed System in Sub-Saharan Africa in an Era of Donor Dependence: A Report for the Global Initiative on Plant Breeding; FAO: Rome, Italy, 2010. [Google Scholar]
- Fijen, T.P.; Scheper, J.A.; Boom, T.M.; Janssen, N.; Raemakers, I.; Kleijn, D. Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecol. Lett. 2018, 21, 1704–1713. [Google Scholar] [CrossRef]
- Jones, J.S.; Bingham, E.T. Inbreeding Depression in Alfalfa and Cross-Pollinated Crops; FAO: Rome, Italy, 1995; Volume 13, pp. 209–233. [Google Scholar]
- Cardoso, A.I.I. Depression by inbreeding after four sucessive self-pollination squash generations. Sci. Agric. 2004, 61, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, M.; Acharya, S.K.; Chakraborty, S.K. Pollinators Unknown: People’s perception of native bees in an agrarian district of West Bengal, India, and its implication in conservation. Trop. Conserv. Sci. 2017, 10. [Google Scholar] [CrossRef]
- Schönfelder, M.L.; Bogner, F.X. Individual perception of bees: Between perceived danger and willingness to protect. PLoS ONE 2017, 12, e0180168. [Google Scholar] [CrossRef] [Green Version]
- Sieg, A.-K.; Teibtner, R.; Dreesmann, D.J.I. Don’t Know Much about Bumblebees?—A Study about Secondary School Students’ Knowledge and Attitude Shows Educational Demand. Insects 2018, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munyuli, T. Pollinator biodiversity in Uganda and in Sub-Sahara Africa: Landscape and habitat management strategies for its conservation. Int. J. Biodivers. Conserv. 2011, 3, 551–609. [Google Scholar]
- Hordzi, W.H.K. Knowledge of the Roles of Cowpea Insect Flower Visitors and Effects of Pesticide Control Measures on them by Farmers in Three Districts in the Central Region of Ghana. Int. J. Res. Stud. Biosci. 2004, 2, 30–55. [Google Scholar]
β | SE | z | p | |
---|---|---|---|---|
Intercept | −3.56 | 0.22 | −16.29 | <0.01 |
Drought | 0.51 | 0.28 | 1.85 | 0.06 |
Floods | 0.98 | 0.26 | 3.83 | <0.01 |
Pests | 1.07 | 0.25 | 4.21 | <0.01 |
Seeds | 1.11 | 0.25 | 4.43 | <0.01 |
Nutrients | 1.43 | 0.24 | 5.90 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawe, T.; Nielsen, A.; Eldegard, K. Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation. Sustainability 2020, 12, 2228. https://doi.org/10.3390/su12062228
Sawe T, Nielsen A, Eldegard K. Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation. Sustainability. 2020; 12(6):2228. https://doi.org/10.3390/su12062228
Chicago/Turabian StyleSawe, Thomas, Anders Nielsen, and Katrine Eldegard. 2020. "Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation" Sustainability 12, no. 6: 2228. https://doi.org/10.3390/su12062228
APA StyleSawe, T., Nielsen, A., & Eldegard, K. (2020). Crop Pollination in Small-Scale Agriculture in Tanzania: Household Dependence, Awareness and Conservation. Sustainability, 12(6), 2228. https://doi.org/10.3390/su12062228