The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Setup
2.2. Sampling and Analytical Methods
3. Results and Discussions
3.1. Methane Production Associate with MSW Biodegradation
3.2. Bacteriareproduction in Bioreactors
3.3. Methanogens in Bioreactors
3.4. Correlations of Microbial Community Dynamics and Methane Production
3.5. Future Prospects and Current Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
EABM | exogenous aerobic bacteria mixture |
MSW | municipal solid waste |
OTUs | operational taxonomic units |
VS | volatile solid |
References
- Vergara, S.E.; Tchobanoglous, G. Municipal Solid Waste and the Environment: A Global Perspective. Soc. Sci. Electron. Publ. 2012, 37, 277–309. [Google Scholar] [CrossRef]
- Castaldi, M.J. Perspectives on sustainable waste management. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 547. [Google Scholar] [CrossRef] [PubMed]
- Ziyang, L.; Luochun, W.; Nanwen, Z.; Youcai, Z. Martial recycling from renewable landfill and associated risks: A review. Chemosphere 2015, 131, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Debishree, K.; Sukha Ranjan, S. Municipal Solid Waste Management using Geographical Information System aided methods: A mini review. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. Iswa 2014, 32, 1049–1062. [Google Scholar]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste production must peak this century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef] [Green Version]
- Daniel, H.; Perinaz, B.T. What A Waste: A Global Review of Solid Waste Management. Available online: https://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf (accessed on 4 February 2020).
- Boonyaroj, V.; Chiemchaisri, C.; Chiemchaisri, W.; Yamamoto, K. Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge. J. Hazard. Mater. 2016, 323 Pt A, 323. [Google Scholar] [CrossRef]
- Zha, F.; Zhang, J.; Yao, D.; Wang, X.; Youbiao, H.U.; Gao, L.; Yang, J. Effect on Dissolved Organic Matter in Landfill Leachate by Sonication. Environ. Sci. Technol. 2016, 17, 1295–1300. [Google Scholar]
- Liu, L.; Xue, Q.; Zeng, G.; Ma, J.; Liang, B. Field-scale monitoring test of aeration for enhancing biodegradation in an old landfill in China. Environ. Prog. Sustain. Energy 2016, 35, 380–385. [Google Scholar] [CrossRef]
- Chen, R.; Nie, Y.; Tanaka, N.; Niu, Q.; Li, Q.; Li, Y.Y. Enhanced methanogenic degradation of cellulose-containing sewage via fungi-methanogens syntrophic association in an anaerobic membrane bioreactor. Bioresour. Technol. 2017, 245, 810. [Google Scholar] [CrossRef]
- Reinhart, D.R.; Mccreanor, P.T.; Townsend, T. The bioreactor landfill: Its status and future. Waste Manag. Res. 2002, 20, 172–186. [Google Scholar] [CrossRef]
- Valencia, R.; Zon, W.V.D.; Woelders, H.; Lubberding, H.J.; Gijzen, H.J. The effect of hydraulic conditions on waste stabilisation in bioreactor landfill simulators. Bioresour. Technol. 2009, 100, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Warith, M. Bioreactor landfills: Experimental and field results. Waste Manag. 2002, 22, 7–17. [Google Scholar] [CrossRef]
- Sawamura, H.; Yamada, M.; Endo, K.; Soda, S.; Ishigaki, T.; Ike, M. Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J. Biosci. Bioeng. 2010, 109, 130. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Sun, Y.; Yuan, Z. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. Bioresour. Technol. 2018, 261, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Melkania, U. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli. Waste Manag. 2018, 75, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.E.; Mcmahon, K.D.; Mackie, R.I.; Raskin, L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Bioeng. 2015, 57, 342–355. [Google Scholar] [CrossRef]
- Rich, C.; Gronow, J.; Voulvoulis, N. The potential for aeration of MSW landfills to accelerate completion. Waste Manag. 2008, 28, 1039–1048. [Google Scholar] [CrossRef]
- Sang, N.N.; Soda, S.; Ishigaki, T.; Ike, M. Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J. Biosci. Bioeng. 2012, 114, 243. [Google Scholar] [CrossRef]
- Bareither, C.A.; Wolfe, G.L.; Mcmahon, K.D.; Benson, C.H. Microbial diversity and dynamics during methane production from municipal solid waste. Waste Manag. 2013, 33, 1982–1992. [Google Scholar] [CrossRef]
- Sosnowski, P.; Wieczorek, A.; Ledakowicz, S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv. Environ. Res. 2003, 7, 609–616. [Google Scholar] [CrossRef]
- Callaghan, F.J.; Wase, D.A.J.; Thayanithy, K.; Forster, C.F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 2002, 22, 71–77. [Google Scholar] [CrossRef]
- Ge, S.; Liu, L.; Xue, Q.; Yuan, Z. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. Waste Manag. 2015, 55, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Regan, J.M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. Bmc Genom. 2012, 13, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 2012, 30, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sponza, D.T.; Ağdağ, O.N. Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochem. 2004, 39, 2157–2165. [Google Scholar] [CrossRef]
- Tang, J.; Chen, K.; Fang, H.; Xu, J.; Li, J. Characterization of the pretreatment liquor of biomass from the perennial grass, Eulaliopsis binata, for the production of dissolving pulp. Bioresour. Technol. 2013, 129, 548–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, D.; Liu, J.; He, L.; Nie, Y. Effect of organic compositions of aerobically pretreated municipal solid waste on non-methane organic compound emissions during anaerobic degradation. Waste Manag. 2012, 32, 1116–1121. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berglyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. Multidiscip. J. Microb. Ecol. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Engelbrektson, A.; Kunin, V.; Wrighton, K.C.; Zvenigorodsky, N.; Chen, F.; Ochman, H.; Hugenholtz, P. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. Isme J. 2010, 4, 642. [Google Scholar] [CrossRef]
- Zhao, J. Enhancement of Methane Production from Solid-state Anaerobic Digestion of Yard Trimmings by Biological Pretreatment. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Yuan, X.; Ma, L.; Wen, B.; Zhou, D.; Kuang, M.; Yang, W.; Cui, Z. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour. Technol. 2016, 207, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Merrylin, J.; Kumar, S.A.; Kaliappan, S.; Yeom, I.-T.; Banu, J.R. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge. Environ. Technol. 2013, 34, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Chiemchaisri, C.; Chiemchaisri, W.; Nonthapund, U.; Sittichoktam, S. Acceleration of solid waste biodegradation in tropical landfill using bioreactor landfill concept. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.548.6159&rep=rep1&type=pdf (accessed on 4 February 2020).
- San, I.; Onay, T.T. Impact of various leachate recirculation regimes on municipal solid waste degradation. J. Hazard. Mater. 2001, 87, 259–271. [Google Scholar] [CrossRef]
- Agdag, O.N.; Sponza, D.T. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere 2005, 59, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cai, Q.; Shen, T.; Yong, G.; Yuan, Z.; Hu, X. Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus. Res. Microbiol. 2018, 169, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Cano, R.J.; Borucki, M.K. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 1995, 268, 1060–1064. [Google Scholar] [CrossRef]
- Fimlaid, K.A.; Shen, A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr. Opin. Microbiol. 2015, 24, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Mcmahon, K.D.; Zheng, D.; Stams, A.J.; Mackie, R.I.; Raskin, L. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol. Bioeng. 2004, 87, 823–834. [Google Scholar] [CrossRef]
- Ariesyady, H.D.; Ito, T.; Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007, 41, 1554. [Google Scholar] [CrossRef]
- Raskin, L.; Poulsen, L.K.; Noguera, D.R.; Rittmann, B.E.; Stahl, D.A. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 1994, 60, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Razaviarani, V.; Buchanan, I.D. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages. Bioresour. Technol. 2014, 172, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Kjeldsen, P. Basic biochemical processes in landfills. In Sanitary Landfilling: Process, Technology, and Environmental Impact; Academy Press: New York, NY, USA, 1989; pp. 29–49. [Google Scholar]
- Francois, V.; Feuillade, G.; Matejka, G.; Lagier, T.; Skhiri, N. Leachate recirculation effects on waste degradation: Study on columns. Waste Manag. 2007, 27, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Ma, J.; Yang, Y.; Liu, G.-J. An Exploration of the Impacts of Compulsory Source-Separated Policy in Improving Household Solid Waste-Sorting in Pilot Megacities, China: A Case Study of Nanjing. Sustainability 2018, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.; Wu, S.; Chu, Z.; Huang, W.-C. Regional Differences in Municipal Solid Waste Collection Quantities in China. Sustainability 2019, 11, 4113. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Pandyaswargo, A.H.; Jagath Dickella Gamaralalage, P.; Liu, C.; Knaus, M.; Onoda, H.; Mahichi, F.; Guo, Y. Challenges and An Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries. Sustainability 2019, 11, 6331. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ma, J.; Xue, Q.; Shao, J.; Chen, Y.; Zeng, G. The in situ aeration in an old landfill in China: Multi-wells optimization method and application. Waste Manag. 2018, 76, 614–620. [Google Scholar] [CrossRef]
Experiments | Quantity of Wet Waste, kg | Moisture Content a (mean ± SD), % | Volatile Solid (VS) a (Mean ± SD), % | Leachate Recirculation | Supplement | Initial pH |
---|---|---|---|---|---|---|
R1 | 10 | 45.17 ± 2.09 | 67.2 ± 2.78 | Yes | 1 kg culture medium of exogenous aerobic bacteria mixture (EABM) | 7.0 |
R2 | 10 | 45.36 ± 2.36 | 66.5 ± 2.21 | Yes | 1 kg EABM and 200 g mycelia pellets | 7.0 |
Methane Production Rate, L·kg−1 VS | ||||||
R2 a | MSW under Microbial Treatments b | MMSW under Physical and Chemical Treatments b | ||||
136.20 | 44.6 [33] | 79 [34] | 45.3 [35] | 57.27 [36] | 79.28 [37] | 63.56 [38] |
R1 | R2 | |||
---|---|---|---|---|
Hydrogenotrophic methanogens | Acetoclastic methanogens | Hydrogenotrophic methanogens | Acetoclastic methanogens | |
Day 0 | 41.26 | 56.35 | 40.20 | 54.85 |
Day 60 | 32.77 | 61.42 | 21.94 | 73.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Ma, J.; Liu, L.; Yuan, Z. The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing. Sustainability 2020, 12, 1815. https://doi.org/10.3390/su12051815
Ge S, Ma J, Liu L, Yuan Z. The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing. Sustainability. 2020; 12(5):1815. https://doi.org/10.3390/su12051815
Chicago/Turabian StyleGe, Sai, Jun Ma, Lei Liu, and Zhiming Yuan. 2020. "The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing" Sustainability 12, no. 5: 1815. https://doi.org/10.3390/su12051815
APA StyleGe, S., Ma, J., Liu, L., & Yuan, Z. (2020). The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing. Sustainability, 12(5), 1815. https://doi.org/10.3390/su12051815