The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Conditions, Plant Material, and Irrigation Treatments
2.2. Cost/Benefit Analysis and Productive, Economic, and Social Efficiency of Irrigation Water
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fraga, H.; García de Cortazar, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Oliveira, A.A.; JMountinho-Pereira Jones, G.V. Climatic suitability of portuguese grapevine varieties and climate change adaptation. Int. J. Clim. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Guiot, J.; Cramer, W. Climate change: The 2015 Paris agreement thresholds and Mediterranean basin ecosystems. Science 2016, 354, 465–468. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Fifth Assessment Report. Climate Change 2014. In Synthesis Report; Summary for Policymakers; IPCC: Geneva, Switzerland, 2014; 31p, Available online: www.ipcc.ch (accessed on 4 November 2019).
- Fraga, H.; Malheiro, A.C.; Mountinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2013, 1, 94–110. [Google Scholar] [CrossRef]
- Resco, P.; Iglesias, A.; Bardají, I.; Sotés, V. Exploring adaptation choices for grapevine regions in Spain. Reg. Environ. Chang. 2016, 16, 979–993. [Google Scholar] [CrossRef]
- Dezsi, S.; Mindrescu, M.; Petrea, D.; Kumar Rai, P.; Hamann, A.; Nistor, M.M. High-resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol. 2018, 38, 3832–3841. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Kriedemann, P.E.; Goodwin, I. Regulated deficit irrigation and partial root-zone drying. In An Overview of Principles and Applications; Irrigation Insights n° 4; Land and Water Australia: Canberra, Australia, 2003; 101p. [Google Scholar]
- Keller, M. Deficit irrigation and vine mineral nutrition. Am. J. Enol. Vitic. 2005, 56, 267–283. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Romero, P.; Fernández, J.I.; Gil, R.; Botía, P. Vigour-yield-quality relationships in long-term deficit-irrigated wine grapes grown under semiarid conditions. Theor. Exp. Plant Physiol. 2016, 28, 23–51. [Google Scholar] [CrossRef]
- Romero, P.; García García, J.; Fernández, J.I.; Gil, R.; del Amor, F.M.; Martínez, A. Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci. Hort. 2016, 203, 69–85. [Google Scholar] [CrossRef]
- Romero, P.; Botía Ordaz, P.; Navarro, J.M. Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agric. Water Manag. 2018, 209, 73–93. [Google Scholar] [CrossRef]
- Romero, P.; Botía, P.; del Amor, F.M.; Gil-Muñoz, R.; Flores, P.; Navarro, J.M. Interactive effects of the rootstock and deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting conditions. Agric. Water Manag. 2019, 225, 105733. [Google Scholar] [CrossRef]
- García García, J.; García Pérez, F.; Martínez Cutillas, A. Contabilidad de costes del cultivo de uva de vinificación de secano en la Región de Murcia. Viticultura y Enología Profesional 2008, 115, 30–36. [Google Scholar]
- García García, J. Actualización de la contabilidad de costes del cultivo de viña en la Región de Murcia. Enoviticultura 2016, 39, 14–23. [Google Scholar]
- García García, J.; Martínez, A.; Romero, P. Financial analysis of wine grape production using regulated deficit irrigation and partial-root zone drying strategies. Irrig. Sci. 2012, 30, 179–188. [Google Scholar] [CrossRef]
- Romero, P.; García García, J.; Botía Ordaz, P. Cost-benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in South-eastern Spain. Irrig. Sci. 2006, 24, 175–184. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 2007, 290, 127–137. [Google Scholar] [CrossRef]
- Hussain, I.; Turral, H.; Molden, D.; Ahmad, M. Measuring and enhancing the value of agricultural water in irrigated river basins. Irrig. Sci. 2007, 25, 263–282. [Google Scholar] [CrossRef]
- Salvador, R.; Martínez-Cob, A.; Cavero, J.; Playán, E. Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation Systems. Agric. Water Manag. 2011, 98, 577–587. [Google Scholar] [CrossRef] [Green Version]
- García García, J.; Contreras López, F.; Usai, D.; Visani, C. Economic assessment and socioeconomic evaluation of water use efficiency in artichoke cultivation. Open J. Account. 2013, 2, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Barber, N.; Taylor, C.; Strick, S. Wine consumers environmental knowledge and attitudes: Influence on willingness to purchase. Int. J. Wine Res. 2009, 1, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 30, 1381–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intrigliolo, D.S.; Castel, J.R. Response of Vitis vinifera cv. “Tempranillo” to partial root-zone drying in the field: Water relations, growth, yield and fruit and wine quality. Agric. Water Manag. 2009, 96, 282–292. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hort. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raesk, D.; Smith, M. Crop evapotranspiration guidelines for computing crop water requirements; Irrigation and Drainage Paper No 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Romero, P.; Fernández-Fernández, J.I.; Botía, P. Interannual climatic variability effects on yield, Berry and wine quality índices in long-term deficit irrigated grapevines, determined by multivariate analysis. Int. J. Wine Res. 2016, 8, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.; Bastiaanssen, W.G.M.; Bassoi, L.H. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil. Agric. Water Manag. 2007, 94, 31–42. [Google Scholar] [CrossRef]
- De Stefano, L.; Ramón, M. Water, Agriculture and the Environment in Spain: Can We Square the Circle; CRC Press: London, UK, 2012; 339p, Available online: https://www.fundacionbotin.org/89dguuytdfr276ed_uploads/Observatorio%20Tendencias/PUBLICACIONES/LIBROS%20SEM%20INTERN/water-agriculture-environment/libro%20comp-water-agriculture.pdf (accessed on 4 December 2019).
- Naroua, I.; Rodríguez, L.; Sánchez, R. Water use efficiency and water productivity in the Spanish irrigation district “Río Adaja”. Int. J. Agric. Policy Res. 2014, 2, 484–491. [Google Scholar]
- Andrés, R.; Cuchí, J.A. Analysis of sprinkler irrigation management in the Lasesa District, Monegros (Spain). Agric. Water Manag. 2014, 131, 95–107. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; García-García, J.; Robles, J.M.; Botía, P. Economic analysis of navel orange cv. Lane late grown on two different drought tolerant rootstocks under deficit irrigation in southeastern Spain. Agric. Water Manag. 2010, 97, 157–164. [Google Scholar] [CrossRef]
- Bajusová, Z.; Svoradová, L.; Dobák, D.; Bajus, P. Evaluation of the impact of labor costs development on grapevine production in the Slovak republic through algorithms. In Proceedings of the International Scientific Days 2016: The Agri-Food Value Chain: Challenges for Natural Resources Management and Society, Nitra, Slovakia, 19–20 May 2016. [Google Scholar] [CrossRef]
- CEE. Hacia un Sector Vitivinícola Europeo. In Informe de la Comisión Europea; EC: Brussels, Belgium, 2006; 27p, Available online: http://ec.europa.eu/spain/pdf/sectorvitivinicola_es.pdf (accessed on 5 December 2019).
- Sellers, R. Would you pay a price premium for a sustainable wine? The voice of the Spanish consumer. Agric. Agric. Sci. Proced. 2016, 8, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Manjón, S. Especial Informe de Vendimias 2018. La Semana Vitivinícola 2018, 3529, 1734–1739. [Google Scholar]
- García-García, J.; García-García, B. Aspectos socioeconómicos y ambientales del cultivo de la uva Monastrell. In El Libro de la Monastrell; Riquelme, F., Martínez-Cutillas, A., Eds.; Consejería de Agua, Agricultura, Ganadería y Pesca: Comunidad Autónoma Region de Murcia, Spain, 2018; 292p. [Google Scholar]
- SA Wine Industry, Statistics NR 43 VINPRO Production Plan Survey; The 2017 Vintage; SAWIS: Paarl, South Africa, 2017; 31p, Available online: https://www.wosa.co.za/The-Industry/Statistics/SA-Wine-Industry-Statistics/ (accessed on 5 December 2019).
- National Vintage Report 2019; Wine Australia: Adelaire, Australia, 2019; 63p, Available online: https://www.wineaustralia.com/getmedia/807bf053-3692-448a-9ed5-c0084a47e1bb/Vintage-report-2019_full-version.pdf (accessed on 5 December 2019).
- 71st Annual Report of Grape Growers of Ontario; Grape Growers of Ontario: St. Catharines, ON, Canada, 2019; 40p, Available online: www.grapegrowersofontario.com (accessed on 1 December 2019).
- New Zealand Winegrowers Inc. Annual Report; New Zealand Winegrowers Inc.: Auckland, New Zealand, 2018; 44p, Available online: http://www.nzwine.com (accessed on 5 December 2019).
- CDFA. Grape Crush Report Final; USDA’S National Agricultural Statistics Service (NASS): Washington, DC, USA; California Department of Food and Agriculture: Sacramento, CA, USA, 2018; 159p. Available online: http://www.nass.usda.gov/ca (accessed on 5 December 2019).
- Retallack, M. Economic Benchmarking for the Murray Valley Wine Region; Murray Valley Winegrowers´ Inc.: Mildura, Australia, 2012; 52p, Available online: https://www.viti.com.au/pdf/Economic%20Benchmark%20Booklet%20FINAL%20121112.pdf (accessed on 5 December 2019).
- Molenhuis, J. Establishment and Production Costs for Grapes in Ontario 2014 Economic Report; Ontario Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2014; 53p, Available online: https://www.grapegrowersofontario.com/sites/default/files/2014%20Grape%20Cost%20of%20Production.pdf (accessed on 5 December 2019).
- Smith, R.J.; Klonsky, K.; Sumner, D.A.; Stewart, D. Sample Costs to Produce Winegrapes; Russian River Valley Sonoma County, UC Davis Department of Agriculture and Resources Economics: Davis, CA, USA, 2016; 29p, Available online: http://coststudies.ucdavis.edu (accessed on 4 December 2019).
- Fernández Alcázar, J.I. Costes de Cultivo en Viñedo. Cuaderno de Campo 2011, 46, 4–13. [Google Scholar]
- Gazulla, C.; Raugei, M.; Fullana-i-Palmer, P. Taking a life cycle look at crianza wine production in Spain: Where are the bottlenecks). Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Point, E.; Tyedmers, P.; Naugler, C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Litskas, V.D.; Irakleous, T.; Tzortzakis, N.; Starvrinides, M.C. Determining the carbon footprint of indigenous and introduced grape varieties through Life Cycle Assessment using the island of Cyprus as a case study. J. Clean. Prod. 2017, 156, 418–425. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life Cycle assessment of the supply chain of a Portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Ferrera, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- García-García, J.; García-García, B. Evaluación socioeconómica y ambiental del cultivo de viña en la Región de Murcia. Enoviticultura 2018, 54, 18–30. [Google Scholar]
- Riquelme, F. Antecedentes. Revision histórica y distribución del cultivo. In El Libro de la Monastrell; Riquelme, F., Martínez-Cutillas, A., Eds.; Consejería de Agua, Agricultura, Ganaderia y Pesca: Región de Murcia, Spain, 2018; pp. 21–43. [Google Scholar]
Year | Irrig. Method | Budburst-Fruitset (mm) | Fruit Set-Veraison (mm) | Veraison-Harvest (mm) | Postharvest (mm) | Total Annual Water Volume Applied (mm year−1) |
---|---|---|---|---|---|---|
April-May | June-July | Beginning of August-mid September | mid-September-end October | |||
% ETc | %ETc | %ETc | %ETc | |||
(10−20) | (10) | (25−30) | (20−30) | |||
Average (2012-2017) | PRI | 20.3 | 25.4 | 36.6 | 10.0 | 92.3 |
RDI | 19.4 | 25.4 | 35.6 | 10.0 | 90.4 |
Initial Value (€) | Residual Value (€) | Useful Life (years) | Depreciation** (€/year) | Depreciation (€/ha) | |
---|---|---|---|---|---|
Shed for equipment and irrigation control | 7200 | 1800 | 30 | 183 | 18 |
Irrigation equipment | 7000 | 0 | 15 | 474 | 47 |
Irrigation network* | 23,910 | 0 | 10 | 2427 | 243 |
Planting | 76,660 | 0 | 25 | 3112 | 311 |
Various | 200 | 0 | 10 | 41 | 4 |
Irrigation Reservoir | 7400 | 1850 | 30 | 188 | 19 |
Investment (€ ha−1) | 12,237 |
Prices | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|
Irrigation water (€ m−3) | 0.19 | 0.19 | 0.20 | 0.20 | 0.20 | 0.22 |
Grapes (€/kg ºBe)* | 0.0260 | 0.0225 | 0.0255 | 0.0220 | 0.0265 | 0.0300 |
140Ru | 161-49C | 110R | 1103P | 41B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PRI | RDI | PRI | RDI | PRI | RDI | PRI | RDI | PRI | RDI | |
Yield (kg ha−1) | 16,198 | 16,354 | 7098 | 8606 | 9802 | 8060 | 9932 | 9828 | 9802 | 10,010 |
ºBaumé | 13.17 | 13.25 | 13.39 | 13.37 | 13.24 | 13.31 | 12.83 | 13.18 | 12.90 | 13.10 |
Average grape price (€ kg−1) | 0.329 | 0.331 | 0.327 | 0.327 | 0.325 | 0.328 | 0.321 | 0.332 | 0.318 | 0.322 |
Total income (€ ton.−1) | 329 | 331 | 326 | 327 | 325 | 328 | 320 | 332 | 318 | 322 |
Total income (€ ha−1) | 5332 | 5416 | 2320 | 2816 | 3182 | 2647 | 3183 | 3263 | 3117 | 3225 |
140Ru | 161-49C | 110R | 1103P | 41B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PRI (€) | RDI (€) | PRI (€) | RDI (€) | PRI (€) | RDI (€) | PRI (€) | RDI (€) | PRI (€) | RDI (€) | |
Shed | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Irrigation equipment | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 |
Irrigation network | 422 | 243 | 422 | 243 | 422 | 243 | 422 | 243 | 422 | 243 |
Planting | 311 | 311 | 311 | 311 | 311 | 311 | 311 | 311 | 311 | 311 |
Various | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Regulator reservoir | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Fixed assets | 822 | 642 | 822 | 642 | 822 | 642 | 822 | 642 | 822 | 642 |
Annual pruning | 437 | 500 | 251 | 255 | 241 | 191 | 344 | 322 | 258 | 255 |
Summer pruning | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 |
Machinery | 580 | 582 | 469 | 487 | 502 | 481 | 503 | 502 | 502 | 504 |
Phytosanitary products | 106 | 106 | 106 | 106 | 106 | 106 | 106 | 106 | 106 | 106 |
Fertilizers | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 | 156 |
Herbicides | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Electricity | 16 | 15 | 16 | 15 | 16 | 15 | 16 | 15 | 16 | 15 |
Harvesting | 1057 | 1068 | 462 | 562 | 639 | 525 | 648 | 641 | 639 | 653 |
Irrigation | 187 | 183 | 187 | 183 | 187 | 183 | 187 | 183 | 187 | 183 |
Operating costs | 2775 | 2847 | 1884 | 2002 | 2084 | 1894 | 2197 | 2163 | 2100 | 2111 |
Total costs* | 3597 | 3489 | 2706 | 2644 | 2906 | 2537 | 3019 | 2805 | 2922 | 2753 |
NM/Cost (%) | NM/Operating Cost (%) | NM/ Investment (%) | Average Cost (€ kg−1) | Break-Even Point (kg ha−1) | WUE (kg m−3) | Water Productivity (€ m−3) | Economic Efficiency (€ m−3) | Social Efficiency (AWU hm−3) | Employment (AWU ha−1) | WVT (€ m−3) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rootstock (R) | ||||||||||||
140Ru | 50.75c | 63.65c | 14.07c | 0.23a | 10,846c | 17.81d | 5.85d | 1.96c | 180d | 0.16c | 2.16c | |
1103P | 9.73b | 12.26b | 2.46b | 0.31b | 9032b | 10.80c | 3.51c | 0.31b | 132c | 0.12b | 0.51b | |
41B | 10.95b | 14.09b | 2.62b | 0.31b | 8846b | 10.90c | 3.48bc | 0.36b | 126b | 0.11a | 0.56b | |
110R | 6.52b | 8.61b | 1.54b | 0.32b | 8265a | 9.82b | 3.21b | 0.22b | 117a | 0.11a | 0.42b | |
161-49C | −5.54a | −9.20a | −0.67a | 0.39c | 8101a | 8.64a | 2.82a | −0.12a | 114a | 0.10a | 0.08a | |
Irrigation method (IM) | ||||||||||||
PRI | 10.33 | 12.77 | 2.88 | 0.33 | 9340 | 11.50 | 3.72 | 0.42 | 133 | 0.12 | 0.62 | |
RDI | 18.63 | 22.99 | 5.13 | 0.30 | 8696 | 11.69 | 3.83 | 0.67 | 135 | 0.12 | 0.87 | |
Year | ||||||||||||
2012 | 28.19d | 37.19d | 6.49d | 0.29b | 7852b | 11.58c | 4.26d | 0.96d | 137c | 0.120bc | 1.16d | |
2013 | 26.61d | 33.67d | 7.14de | 0.21a | 12,474d | 18.11d | 4.84e | 1.05d | 170d | 0.150e | 1.25d | |
2014 | −17.57a | −26.01a | −2.99a | 0.47d | 7178a | 7.26a | 2.60a | −0.48a | 118a | 0.098a | −0.28a | |
2015 | 0.19b | −0.52b | 0.50b | 0.28b | 10,916c | 12.25c | 3.35b | 0.07b | 137c | 0.125d | 0.27b | |
2016 | 18.37c | 23.37c | 4.73c | 0.33c | 7734b | 10.06b | 3.71c | 0.66c | 124b | 0.116b | 0.86c | |
2017 | 31.11d | 39.59d | 8.16e | 0.30bc | 7954b | 10.31b | 3.89c | 1.02d | 118a | 0.123cd | 1.22d | |
Interaction (R x IM) | ||||||||||||
140Ru | PRI | 47.13d | 60.77e | 12.39i | 0.23a | 11,028j | 17.57i | 5.75e | 1.84e | 175e | 0.161f | 2.04e |
RDI | 54.36d | 66.53e | 15.75j | 0.22a | 10,663i | 18.06j | 5.96e | 2.09e | 185f | 0.167f | 2.29e | |
1103P | PRI | 4.62b | 5.89b | 1.17c | 0.32bc | 9499h | 10.78f | 3.44cd | 0.15b | 132d | 0.121e | 0.35b |
RDI | 14.83c | 18.62cd | 3.74g | 0.31bc | 8565e | 10.82g | 3.58d | 0.47cd | 132d | 0.119de | 0.67cd | |
41B | PRI | 5.77b | 7.52bc | 1.39d | 0.32bc | 9152g | 10.71e | 3.39cd | 0.21bcd | 125bc | 0.114cd | 0.41bcd |
RDI | 16.14c | 20.67d | 3.86h | 0.30b | 8539d | 11.09h | 3.56d | 0.51d | 128cd | 0.115cd | 0.71d | |
110R | PRI | 10.05bc | 13.77bcd | 2.19f | 0.31bc | 8850f | 10.69d | 3.49cd | 0.32bcd | 124bc | 0.113bc | 0.52bcd |
RDI | 2.99b | 3.44b | 0.90b | 0.34c | 7680a | 8.95b | 2.93b | 0.12b | 111a | 0.100a | 0.32b | |
161-49C | PRI | −15.92a | −24.08a | −2.75a | 0.44d | 8170c | 7.74a | 2.53a | −0.43a | 109a | 0.099a | −0.23a |
RDI | 4.85b | 5.69b | 1.41e | 0.34c | 8032b | 9.54c | 3.11bc | 0.18bc | 120b | 0.108b | 0.38bc | |
ANOVA | ||||||||||||
R | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
IM | *** | *** | *** | ** | *** | ns | ns | *** | ns | ns | *** | |
Year | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
R x IM | ** | *** | ** | *** | ** | ** | ** | ** | *** | *** | ** |
Rootstock (R) | QI Overall Berry | QIWine | |
---|---|---|---|
140Ru | 9.8a | 1.56b | |
1103P | 10.0a | 1.62b | |
41B | 10.8b | 1.38a | |
110R | 11.2b | 1.80c | |
161-49C | 12.3c | 1.83c | |
Irrigation method (IM) | |||
PRI | 11.2 | 1.68 | |
RDI | 10.5 | 1.60 | |
Year | |||
2012 | 12.6d | - | |
2013 | 7.7a | - | |
2014 | 10.6b | 2.33c | |
2015 | 11.7c | 1.77b | |
2016 | 11.5c | 0.83a | |
Interaction (R x IM) | |||
140Ru | PRI | 10.2bc | 1.45abc |
RDI | 9.4a | 1.67bc | |
1103P | PRI | 10.2bc | 1.49abc |
RDI | 9.8ab | 1.75c | |
41B | PRI | 10.7cd | 1.24a |
RDI | 10.8cd | 1.51abc | |
110R | PRI | 11.2d | 1.83c |
RDI | 11.3d | 1.77c | |
161-49C | PRI | 13.5e | 2.39d |
RDI | 11.1d | 1.28ab | |
ANOVA | |||
R | *** | * | |
IM | *** | ns | |
Year | *** | *** | |
R x IM | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero Azorín, P.; García García, J. The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions. Sustainability 2020, 12, 1930. https://doi.org/10.3390/su12051930
Romero Azorín P, García García J. The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions. Sustainability. 2020; 12(5):1930. https://doi.org/10.3390/su12051930
Chicago/Turabian StyleRomero Azorín, Pascual, and José García García. 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions" Sustainability 12, no. 5: 1930. https://doi.org/10.3390/su12051930
APA StyleRomero Azorín, P., & García García, J. (2020). The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions. Sustainability, 12(5), 1930. https://doi.org/10.3390/su12051930