Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Strain, Growth Medium and Pre-Cultivation Conditions
2.3. Photobioreactor Setup and Experimental Conditions: Nitrate Limitation and Depletion
2.4. Determination of Specific Growth Rate and Biomass Productivity
2.5. Lipid Quantitative and Qualitative Analysis
2.6. Determination of Calorific Values (CV)
2.7. Assessment of Biodiesel Quality
2.8. Statistical Analysis
3. Results and Discussion
3.1. Assessment of the Temperature Effect on the Biomass Productivity
3.2. Effect of Temperature Variations on Lipid Quantity, Productivity and Quality
3.3. Combined Effect of Temperature and Nitrogen Starvation on Biomass Productivity
3.4. Combined Effect of Temperature and Nitrogen Regime on Lipid Quantity and Quality
3.5. Determination of Biomass Calorific Values (CV)
3.6. Assessment of Biodiesel Quality
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leader, T.; Team, A.I.; Analysis, I.E.; Analysis, R.; Gas, N.; Analysis, B.; Analysis, E.; Lynn, D.; Building, F. Annual Energy Outlook 2014; U.S. Energy Inf. Administration: Washington, DC, USA, 2014; pp. 1–269. [Google Scholar]
- Larkum, A.W.D. Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotechnol. 2010, 21, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Metting, F.B. Biodiversity and application of microalgae. J. Ind. Microbiol. Biotechnol. 1996, 17, 477–489. [Google Scholar] [CrossRef]
- Encarnação, T.; Arranja, C.T.; Cova, T.F.G.G.; Pais, A.A.C.C.; Campos, M.G.; Sobral, A.J.F.N.; Burrows, H.D. Monitoring oil production for biobased feedstock in the microalga Nannochloropsis sp.: A novel method combining the BODIPY BD-C12 fluorescent probe and simple image processing. J. Appl. Phycol. 2018, 30, 2273–2285. [Google Scholar] [CrossRef]
- Bertozzini, E.; Galluzzi, L.; Penna, A.; Magnani, M. Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J. Microbiol. Methods 2011, 87, 17–23. [Google Scholar] [CrossRef]
- Bobde, K.; Momin, H.; Bhattacharjee, A.; Aikat, K. Energy assessment and enhancement of the lipid yield of indigenous Chlorella sp. KA-24NITD using Taguchi approach. Renew. Energy 2019, 131, 1226–1235. [Google Scholar] [CrossRef]
- Ranjan, A.; Patil, C.; Moholkar, V.S. Mechanistic assessment of microalgal lipid extraction. Ind. Eng. Chem. Res. 2010, 49, 2979–2985. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J. CO2 Util. 2020, 36, 196–209. [Google Scholar] [CrossRef]
- Alexandre, A.M.R.C.; Serra, A.T.; Matias, A.A.; Duarte, C.M.M.; Bronze, M.R. Supercritical fluid extraction of Arbutus unedo distillate residues—Impact of process conditions on antiproliferative response of extracts. J. CO2 Util. 2020, 37, 29–38. [Google Scholar] [CrossRef]
- Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Sanzo, G.D.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective extraction of ω-3 fatty acids from nannochloropsis sp. using supercritical CO2 Extraction. Molecules 2019, 24, 2406. [Google Scholar] [CrossRef] [Green Version]
- Da Rosa, B.V.; Kuhn, K.R.; Ugalde, G.A.; Zabot, G.L.; Kuhn, R.C. Antioxidant compounds extracted from Diaporthe schini using supercritical CO2 plus cosolvent. Bioprocess Biosyst. Eng. 2020, 43, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Vadlamani, A.; Viamajala, S.; Pendyala, B.; Varanasi, S. Cultivation of Microalgae at Extreme Alkaline pH Conditions: A Novel Approach for Biofuel Production. ACS Sustain. Chem. Eng. 2017, 5, 7284–7294. [Google Scholar] [CrossRef]
- Béchet, Q.; Shilton, A.; Guieysse, B. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 2013, 31, 1648–1663. [Google Scholar] [CrossRef]
- Rai, M.P.; Gupta, S. Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers. Manag. 2017, 141, 85–92. [Google Scholar] [CrossRef]
- Saadaoui, I.; Bounnit, T.; Muraikhi, M.; Rasheed, R.; Alghasal, G.; Al Jabri, H. Improvement of both lipid and biomass productivities of Qatar Chlorocystis isolate for biodiesel production and food security. Phycol. Res. 2018, 66, 182–188. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J. Effects of heat stress on photosynthetic electron transport in a marine cyanobacterium Arthrospira sp. J. Appl. Phycol. 2016, 28, 757–763. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Courchesne, N.M.D.; Parisien, A.; Wang, B.; Lan, C.Q. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 2009, 141, 31–41. [Google Scholar] [CrossRef]
- Riches, C.J.; Robinson, P.K.; Rolph, C.E. Effect of heavy metals on lipids from the freshwater alga Selenastrum capricornutum. Biochem. Soc. Trans. 2015, 24, 174S. [Google Scholar] [CrossRef]
- Lombardi, A.T.; Wangersky, P.J. Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 1995, 306, 1–6. [Google Scholar] [CrossRef]
- Divya, V.B. Tyagi Biodiesel: Source, Production, Composition, Properties and Its Benefits. J. Oleo Sci. 2006, 55, 487–502. [Google Scholar]
- Saadaoui, I.; Al Ghazal, G.; Bounnit, T.; Al Khulaifi, F.; Al Jabri, H.; Potts, M. Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae. Algal Res. 2016, 14, 39–47. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrates Animals; Smith, M.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Zhu, C.J.; Lee, Y.K. Determination of biomass dry weight of marine microalgae. J. Appl. Phycol. 1997, 9, 189–194. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Illman, A.M.; Scragg, A.H.; Shales, S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym. Microb. Technol. 2000, 27, 631–635. [Google Scholar] [CrossRef]
- Francisco, É.C.; Neves, D.B.; Jacob-Lopes, E.; Franco, T.T. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 2010, 85, 395–403. [Google Scholar] [CrossRef]
- Ramírez-Verduzco, L.F.; Rodríguez-Rodríguez, J.E.; Jaramillo-Jacob, A.D.R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 2012, 91, 102–111. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, D.K.; Lee, J.P.; Park, S.C.; Kim, Y.J.; Lee, J.S. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour. Technol. 2008, 99, 1196–1203. [Google Scholar] [CrossRef]
- Sorokin, C.; Krauss, R.W. Effects of Temperature & Illuminance on Chlorella Growth Uncoupled From Cell Division. Plant Physiol. 1962, 37, 37–42. [Google Scholar] [PubMed] [Green Version]
- Torzillo, G.; Vonshak, A. Environmental Stress Physiology with Reference to Mass Cultures. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Wiley: Chichester, UK, 2013; pp. 90–100. [Google Scholar]
- Feller, U.; Crafts-Brandner, S.J.; Salvucci, M.E. Moderately High Temperatures Inhibit Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco. Plant Physiol. 1998, 116, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvucci, M.E.; Crafts-Brandner, S.J. Mechanism for deactivation of Rubisco under moderate heat stress. Physiol. Plant. 2004, 122, 513–519. [Google Scholar] [CrossRef]
- Doubnerová, V.; Ryšlavá, H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci. 2011, 180, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q. Environmental Effects on Cell Composition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Wiley: Chichester, UK, 2007. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Custódio, L.; Alrokayan, S.; Mouffouk, F.; Varela, J.; Abu-Salah, K.M.; Ben-Hamadou, R. Isolation and fatty acid profile of selected microalgae strains from the red sea for biofuel production. Energies 2013, 6, 2773–2783. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Knothe, G. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22, 1358–1364. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 2004, 40, 651–654. [Google Scholar] [CrossRef]
- Rousch, J.M.; Bingham, S.E.; Sommerfeld, M.R. Changes in fatty acid profiles of thermo-intolerant and thermo-tolerant marine diatoms during temperature stress. J. Exp. Mar. Bio. Ecol. 2003, 295, 145–156. [Google Scholar] [CrossRef]
- Tsydendambaev, V.D.; Ivanova, T.V.; Khalilova, L.A.; Kurkova, E.B.; Myasoedov, N.A.; Balnokin, Y.V. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity. Russ. J. Plant Physiol. 2013, 60, 661–671. [Google Scholar] [CrossRef]
- Da Silva, A.F.; Lourenço, S.O.; Chaloub, R.M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat. Bot. 2009, 91, 291–297. [Google Scholar] [CrossRef]
- Pruvost, J.; Van Vooren, G.; Le Gouic, B.; Couzinet-Mossion, A.; Legrand, J. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour. Technol. 2011, 102, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Přibyl, P.; Cepák, V.; Zachleder, V. Production of lipids in 10 strains of chlorella and parachlorella, and enhanced lipid productivity in chlorella vulgaris. Appl. Microbiol. Biotechnol. 2012, 94, 549–561. [Google Scholar] [CrossRef]
- Davis, D.K.; Greene, R.P.; Estaville, L.E.; Saku, J.C.; Matthews, O.P.; Sternberg, R.; Vanderbeck, R.M.; Moseley, W.G.; O’Brien, W.E.; Gatrell, J.D.; et al. Physiology and Biochemistry of Algae. Arch. Biochem. Biophys. 2002, 10, 44–77. [Google Scholar]
- Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 2011, 90, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Msanne, J.; Xu, D.; Konda, A.R.; Casas-Mollano, J.A.; Awada, T.; Cahoon, E.B.; Cerutti, H. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 2012, 75, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Z.; Liu, Y.; Frear, C.; Chen, S. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl. Microbiol. Biotechnol. 2009, 81, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Stansell, G.R.; Gray, V.M.; Sym, S.D. Microalgal fatty acid composition: Implications for biodiesel quality. J. Appl. Phycol. 2012, 24, 791–801. [Google Scholar] [CrossRef]
- Reitan, K.I.; Rainuzzo, J.R.; Olsen, Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 1994, 30, 972–979. [Google Scholar] [CrossRef]
- Viêgas, C.V.; Hachemi, I.; Freitas, S.P.; Mäki-Arvela, P.; Aho, A.; Hemming, J.; Smeds, A.; Heinmaa, I.; Fontes, F.B.; Da Silva Pereira, D.C.; et al. A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel 2015, 155, 144–154. [Google Scholar] [CrossRef]
- Takagi, M.; Watanabe, K.; Yamaberi, K.; Yoshida, T. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 2000, 54, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Ördög, V.; Stirk, W.A.; Bálint, P.; Aremu, A.O.; Okem, A.; Lovász, C.; Molnár, Z.; van Staden, J. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Res. 2016, 16, 141–149. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef]
- Roessler, P.G. Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions. J. Phycol. 1990, 26, 393–399. [Google Scholar] [CrossRef]
- Ratledge, C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 2004, 86, 807–815. [Google Scholar] [CrossRef]
- Nomura, M.; Kamogawa, H.; Susanto, E.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K. Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. J. Appl. Phycol. 2013, 25, 1159–1169. [Google Scholar] [CrossRef]
- Talebi, A.F.; Mohtashami, S.K.; Tabatabaei, M.; Tohidfar, M.; Bagheri, A.; Zeinalabedini, M.; Hadavand Mirzaei, H.; Mirzajanzadeh, M.; Malekzadeh Shafaroudi, S.; Bakhtiari, S. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013, 2, 258–267. [Google Scholar] [CrossRef]
- Chen, M.; Tang, H.; Ma, H.; Holland, T.C.; Ng, K.Y.S.; Salley, S.O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 2011, 102, 1649–1655. [Google Scholar] [CrossRef]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Lawton, C.L.; Delargy, H.J.; Brockman, J.; Smith, F.C.; Blundell, J.E. The degree of saturation of fatty acids influences post-ingestive satiety. Br. J. Nutr. 2000, 83, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Fosse, H.K.; Li, K.; Chauton, M.S.; Vadstein, O.; Reitan, K.I. Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Front. Mar. Sci. 2019, 6, 95. [Google Scholar] [CrossRef]
- Sukenik, A. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour. Technol. 1991, 35, 263–269. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Slocombe, S.P.; Leakey, R.J.G.; Day, J.G.; Bell, E.M.; Stanley, M.S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol. 2013, 129, 439–449. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Mishra, S.; Kuhaneck, R.M.; Heckathorn, S.A.; Bridgeman, T.B. Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: A candidate for biofuel production. J. Appl. Phycol. 2012, 24, 1045–1051. [Google Scholar] [CrossRef]
- Scragg, A.H.; Illman, A.M.; Carden, A.; Shales, S.W. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 2002, 23, 67–73. [Google Scholar] [CrossRef]
- Mallick, N.; Mandal, S.; Singh, A.K.; Bishai, M.; Dash, A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 2012, 87, 137–145. [Google Scholar] [CrossRef]
- Mittelbach, M. Diesel fuel derived from vegetable oils, VI: Specifications and quality control of biodiesel. Bioresour. Technol. 1996, 56, 7–11. [Google Scholar] [CrossRef]
- Knothe, G. Fuel Properties of Highly Polyunsaturated Fatty Acid Methyl Esters. Prediction of Fuel Properties of Algal Biodiesel. Energy Fuels 2012, 26, 5265–5273. [Google Scholar] [CrossRef]
- Radakovits, R.; Jinkerson, R.E.; Fuerstenberg, S.I.; Tae, H.; Settlage, R.E.; Boore, J.L.; Posewitz, M.C. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 2012, 3, 686. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, R.; Felföldi, T.; Tauber, T.; Sanniyasi, E.; Sibanda, T.; Tekere, M. Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production. Energies 2015, 8, 7502–7521. [Google Scholar] [CrossRef] [Green Version]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Knothe, G.; Matheaus, A.C.; Ryan, T.W. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 2003, 82, 971–975. [Google Scholar] [CrossRef]
- Kyriakidis, N.B.; Katsiloulis, T. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: Comparison with the relevant American Oil Chemists’ Society method. JAOCS J. Am. Oil Chem. Soc. 2000, 77, 1235–1238. [Google Scholar] [CrossRef]
- Ayodeji, A.; Opeyemi, A.; Modupe, O.; Bibi, I. Oxidation Stability of Fatty Acid Methyl Ester under Three Different Conditions. J. Energy Technol. Policy 2016, 6, 6–11. [Google Scholar]
FAME-Compounds | FAMEs Relative % | ||
---|---|---|---|
20 °C | 30 °C | 40 °C | |
C14:0 Methyl myristate | 0.92 ± 0.02 | 0.88 ± 0.03 | 1.2 ± 0.06 |
C14:1 Methyl myristoleate | 0.05 ± 0.01 | ND | ND |
C16:0 Methyl palmitate | 30.57 ± 4.6 | 29.52 ± 2.8 | 37.85 ± 5.2 |
C16:1 Methyl palmitoleate | 2.67 ± 0.9 | 1.60 ± 0.41 | 1.46 ± 0.5 |
C18:0 Methyl stearate | 1.66 ± 0.23 | 4.1 ± 0.56 | 5.3 ± 1.9 |
C18: 1n9t: Elaidic acid | 0.20 ± 0.43 | 0.18 ± 0.05 | 0.29 ± 0.01 |
C18: 1n9c: Oleic acid | 24.12 ± 1.75 | 38.08 ± 2.65 | 25.83 ± 3.6 |
C18:2 Methyl linoleate | 26.15 ± 1.8 | 19.9 ± 2.3 | 24.3 ± 2.6 |
C18:3 Methyl linolenate | 6.83 ± 0.3 | 3.62 ± 1.3 | 2.02 ± 0.2 |
C20:0 Methyl arachidate | 0.69 ± 0.04 | 0.8 ± 0.012 | 0.68 ± 0.1 |
C20:1 Methyl 11-eicoenoate | 0.14 ± 0.004 | 0.19 ± 0.005 | 0.12 ± 0.007 |
C20:2 Methyl 11,14-eicosadienoate | 5.25 ± 1.4 | 0.78 ± 0.2 | 0.35 ± 0.13 |
C20:4 Methyl arachidonate | 0.19 ± 0.005 | 0.16 ± 0.001 | 0.14 ± 0.002 |
C20:3 Methyl 11,14,17-eicosatrienoate | 0.08 ± 0.01 | 0.036 ±0.001 | 0.04 ± 0.016 |
C20:5 Methyl eicosapentaenoate | 0.11 ± 0.009 | 0.087 ± 0.005 | 0.12 ± 0.006 |
C22:0 Methyl behenate | 0.07 ± 0.002 | 0.01 ± 0.004 | 0.015 ± 0.005 |
C24:0 Methyl lignocerate | 0.215 ± 0.15 | 0.115 ± 0.008 | 0.148 ± 0.078 |
C22:6 Methyl docosahexaenoate | 0.052 ± 0.012 | 0.052 ± 0.016 | 0.073 ± 0.02 |
C24:1 Methyl nervonate | 0.953 ± 0.009 | 0.501 ± 0.003 | 0.217 ± 0.005 |
∑SFAs | 34.12 ± 3.4 | 35.31 ± 5.3 | 45.19 ± 2.9 |
∑MUFAS | 33.91± 4.23 | 40.56 ± 5.3 | 27.92 ± 1.39 |
∑PUFAS | 32.22± 1.59 | 23.84 ± 1.8 | 27.09 ± 0.89 |
∑C16-C18 | 92.2± 0.3 | 96.88 ± 4.5 | 97.08 ± 1.56 |
Culture Conditions | Lipid Content % | Yield (%) | Lipid Productivity (mg L−1 d−1) | Yield (%) |
---|---|---|---|---|
20 °C | 22.5 ± 1.41 | *** | 16.9 ± 3.27 | *** |
20 °C NL | 29.7 ± 0.94 | 32 | 21.7 ± 2.54 | 28.5 |
20 °C ND | 32 ± 1.41 | 42.2 | 28.2 ± 1.54 | 66.9 |
30 °C | 28.4 ± 0.8 | *** | 55.4 ± 4.94 | *** |
30 °C NL | 35 ± 1.69 | 23.2 | 70 ± 2.72 | 26.4 |
30 °C ND | 41.2 ± 1.14 | 45.1 | 93.1 ± 2.79 | 68.1 |
40 °C | 30 ± 0.98 | *** | 47.1 ± 1.23 | *** |
40 °C NL | 42.5 ± 0.77 | 41.7 | 76.5 ± 1.82 | 62.4 |
40 °C ND | 45 ± 0.99 | 50.0 | 90.9 ± 1.85 | 93.0 |
FAME-Compounds | FAMEs Relative % | |||||
---|---|---|---|---|---|---|
20 °C NL | 20 °C ND | 30 °C NL | 30 °C ND | 40 °C NL | 40 °C ND | |
C14:0 Methyl myristate | 1.42 ± 0.2 | 1.43 ± 0.8 | 1.12 ± 0.6 | 0.94 ± 0.1 | 1.04 ± 0.3 | 0.97 ± 0.15 |
C14:1 Methyl myristoleate | 0.04 ± 0.01 | ND | ND | ND | ND | ND |
C16:0 Methyl palmitate | 18.11 ± 1.2 | 16.7 ± 0.9 | 28.68 ± 0.9 | 27.4 ± 1.3 | 46.6 ± 2.1 | 43.6 ± 1.3 |
C16:1 Methyl palmitoleate | 3.01±0.8 | 2.45 ±0.2 | 2.97 ± 0.5 | 2.3 ± 0.9 | 5.12 ± 0.5 | 1.66 ± 0.2 |
C18:0 Methyl stearate | 3.02 ±0.7 | 6.36 ± 1.4 | 3.42 ± 0.45 | 3.73 ± 1.5 | 9.9 ± 1.45 | 2.79 ± 0.9 |
C18: 1n9t Elaidic acid | 0.32 ± 0.09 | 0.36 ± 0.1 | 0.19 ± 0.08 | 0.20 ± 0.06 | 0.25 ± 0.03 | 0.17 ± 0.04 |
C18:1 Methyl oleate | 30.25 ± 1.5 | 42.25 ± 2.4 | 37.49 ± 1.9 | 42.08 ± 3.3 | 22.90 ± 0.8 | 38.9 ± 1.81 |
C18:2 Methyl linoleate | 32.65 ± 2.4 | 21.98 ± 3 | 19.65 ± 1.7 | 17.57 ± 0.9 | 9.83 ± 2.6 | 8.1 ±2.36 |
C18:3 Methyl linolenate | 6.81 ± 0.7 | 5.83 ± 0.9 | 4.23 ± 0.8 | 3.53 ±0.9 | 2.48 ±0.7 | 2.17 ± 0.6 |
C20:0 Methyl arachidate | 0.37 ± 0.8 | 0.19 ± 0.03 | 0.24 ± 0.07 | 0.25 ± 0.37 | 0.18 ± 0.103 | 0.15 ± 0.08 |
C20:1 Methyl 11-eicoenoate | 0.42 ± 0.19 | 0.4 ± 0.01 | 0.27 ± 0.9 | 0.26 ± 0.08 | 0.12 ± 0.086 | 0.11 ± 0.05 |
C20:2 Methyl 11,14-eicosadienoate | 2.91 ± 0.35 | 1.43 ± 0.61 | 1.18 ± 0.12 | 1.25 ± 0.23 | 1.04 ± 0.046 | 0.93 ± 0.25 |
C20:4 Methyl arachidonate | 0.30 ± 0.01 | 0.25 ± 0.03 | 0.22 ± 0.05 | 0.19 ±0.02 | 0.16 ± 0.03 | 0.14 ± 0.08 |
C20:3Methyl 11,14,17-eicosatrienoate | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.15 | 0.05 ±0.012 | 0.03 ± 0 |
C20:5 Methyl eicosapentaenoate | 0.06 ± 0.01 | 0.08 ±0.00 | 0.05 ± 0.00 | 0.09 ±0.01 | 0.04 ± 0.005 | 0.05 ± 0.01 |
C22:0 Methyl behenate | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01± 0.00 | 0.01±0.00 | 0.013 ± 0.01 | 0.02 ± 0.01 |
C22:1 Methyl erucate | 0.02 ± 0.01 | 0.03 ± 0.09 | 0.011± 0.01 | ND | 0.01 ±0.00 | 0.09 ±0.01 |
C24:0 Methyl lignocerate | 0.16 ± 0.03 | 0.15 ± 0.06 | 0.18 ± 0.02 | 0.13 ± 0.09 | 0.224 ± 0.12 | 0.14 ± 0.08 |
C22:6 Methyl docosahexaenoate | 0.04 ± 0.02 | 0.05 ± 0.01 | 0.035 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.01 |
C24:1 Methyl nervonate | 2.3 ± 0.32 | 1.4 ± 0.05 | 0.12 ± 0.06 | 0.9 ± 0.02 | 0.70 ± 0.0 | 0.4 ± 0.02 |
∑SFAs | 23.09± 0.70 | 24.84 ± 0.66 | 33.64 ± 2.87 | 32.45± 0.9 | 47.95 ± 2.87 | 57.68 ± 2.28 |
∑MUFAs | 36.36± 0.24 | 46.89 ± 4.1 | 42.53 ± 1.23 | 45.75± 1.7 | 29.11 ± 0.3 | 41.24 ± 3.1 |
∑PUFAs | 42.85± 3.73 | 29.66 ± 1.48 | 25.43 ± 1.3 | 22.70± 0.8 | 13.64 ± 1.9 | 11.46 ± 0.59 |
∑C16-C18 | 94.17 ± 5.6 | 95.93 ± 8.3 | 96.63 ± 10.3 | 96.81 ± 2.9 | 97.07 ± 4.9 | 97.38 ± 3.59 |
Ratio PUFAs/MUFAs | 1.85 | 1.19 | 0.75 | 0.7 | 0.28 | 0.19 |
Culture Conditions | Calorific Value (kJg−1) |
---|---|
20 °C | 7.93 ± 0.11 |
30 °C | 16.92 ± 0.41 |
40 °C | 19.28 ± 0.59 |
20 °C NL | 11.26 ± 0.48 |
30 °C NL | 23.43 ± 0.74 |
40 °C NL | 25.63 ± 0.66 |
20 °C ND | 15.6 ± 0.84 |
30 °C ND | 28.18 ± 0.95 |
40 °C ND | 29.07 ± 0.67 |
Biomass Used for Biodiesel | SV (mg/g KOH) | IV (gI2/100g fat) | Cetane Number | Degree of Unsaturation | Oxidation Stability (h) | Kinematic viscosity υ (mm2 s−1) | SFAs (%) | MUFAs (%) | PUFAs (%) | Lipid (%) | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiesel Standard EN14214 | -- | ≤120 | ≥51 | -- | ≥6 | 3.5–5.0 | -- | -- | -- | -- | -- | |
Biodiesel Standard ASTM D6751-02 | -- | NA | ≥51 | -- | -- | 1.9–6.0 | -- | -- | -- | -- | -- | |
N. atomus cultivated at | 20 °C | 194.7 | 96.2 | 52.7 | 98.4 | 6.2 | 3.4 | 34.1 | 33.9 | 32.2 | 22.5 | This study |
30 °C | 179 | 80.6 | 56.2 | 86 | 7.6 | -- | 35.3 | 40.1 | 23.8 | 28.4 | ||
40 °C | 196.5 | 73 | 57.6 | 80.4 | 7.1 | -- | 45.2 | 27.9 | 27.1 | 30 | ||
20 °C NL | 193.2 | 109.6 | 49.9 | 113.3 | 5.6 | -- | 23.1 | 36.4 | 42.8 | 29.7 | ||
30 °C NL | 192.9 | 96 | 53 | 99.4 | 6.8 | -- | 33.6 | 42.5 | 25.4 | 32 | ||
40 °C NL | 195.1 | 83.3 | 55.5 | 87.7 | 7.5 | -- | 58.0 | 29.1 | 13.6 | 41.2 | ||
20 °C ND | 194.6 | 81.3 | 56.1 | 86.9 | 8.2 | -- | 24.8 | 46.9 | 29.7 | 35 | ||
30 °C ND | 198.6 | 50.8 | 62.3 | 53.5 | 12.2 | -- | 32.4 | 45.8 | 22.7 | 42.5 | ||
40 °C | 197.4 | 57.1 | 61.1 | 61.8 | 14.1 | -- | 47.7 | 41.2 | 11.5 | 45 | ||
Isochrysis | 160.5 | 82.1 | 49.5 | 66.8 | -- | 3.5 | 32.9 | 22.2 | 25.1 | [72] | ||
Nannochloropsis | 184.5 | 101.2 | 52 | 67.8 | -- | 3.4 | 40.6 | 34 | 16.9 | 40 | [73] | |
Chlorella | -- | -- | 46 | -- | -- | 3.7 | -- | -- | -- | ND | [74] | |
Dictyosphaerium ehrenbergianum | -- | 46.9 | 59.8 | -- | -- | 4.9 | -- | -- | -- | 34.1 | [75] | |
Micractinium pusillum CCAP 248/1 | -- | 42.4 | 60.2 | -- | -- | 4.9 | -- | -- | -- | 32.3 | [75] | |
Micractinium pusillum CCAP 248/3 | -- | 28.3 | 61.4 | -- | -- | 5. | -- | -- | -- | 23.6 | [75] | |
Chlorella vulgaris | -- | 75.1 | 57.2 | -- | -- | 4.6 | -- | -- | -- | 42.1 | [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounnit, T.; Saadaoui, I.; Rasheed, R.; Schipper, K.; Al Muraikhi, M.; Al Jabri, H. Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production. Sustainability 2020, 12, 2008. https://doi.org/10.3390/su12052008
Bounnit T, Saadaoui I, Rasheed R, Schipper K, Al Muraikhi M, Al Jabri H. Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production. Sustainability. 2020; 12(5):2008. https://doi.org/10.3390/su12052008
Chicago/Turabian StyleBounnit, Touria, Imen Saadaoui, Rihab Rasheed, Kira Schipper, Maryam Al Muraikhi, and Hareb Al Jabri. 2020. "Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production" Sustainability 12, no. 5: 2008. https://doi.org/10.3390/su12052008
APA StyleBounnit, T., Saadaoui, I., Rasheed, R., Schipper, K., Al Muraikhi, M., & Al Jabri, H. (2020). Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production. Sustainability, 12(5), 2008. https://doi.org/10.3390/su12052008