Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Collection and Preprocessing
2.2. Coupling and Coordination Model
2.2.1. Indicator Normalization
2.2.2. Entropy Weight
2.2.3. Coupling Coordination Degree Assessment
3. Results and Analysis
3.1. Entropy Weight of Indicators
3.2. Coupling and Coordination Degree of PLE
3.2.1. National Situation
3.2.2. Provincial Capital Cities
3.2.3. Representative Cities Decreasing in Coupling Coordination Degree Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockstrom, J.; Ohman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Sustainable Development Goals Booklet. Available online: https://www.undp.org/content/undp/en/home/librarypage/corporate/sustainable-development-goals-booklet/ (accessed on 25 February 2020).
- New Urban Agenda. Available online: https://www.un.org/zh/documents/treaty/files/A-RES-71-256.shtml (accessed on 25 February 2020).
- Bryan, B.A.; Gao, L.; Ye, Y.Q.; Sun, X.F.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.G.; He, C.Y.; Yu, D.Y.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Li, G.D.; Fang, C.L. Quantitative function identification and analysis of urban ecological-production-living spaces. Acta Geogr. Sin. 2016, 71, 49–65. [Google Scholar] [CrossRef]
- Bertuglia, C.S.; Staricco, L. Complessità, Autoorganizzazione, Città; Franco Angeli: Milano, Italy, 2000. [Google Scholar]
- Portugali, J. Complexity, Cognition and the City; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Zhou, D.; Xu, J.C.; Lin, Z.L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Meyers, R.A. Encyclopedia of Complexity and Systems Science; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ruelle, D. Chance and Chaos; Princeton University Press: Woodstock Oxfordshire, UK, 1993; Volume 11. [Google Scholar]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Lu, D.F.; Jiang, M.Q. Features, logical relations and optimizing strategies of urban“Production-living-ecological space”. Hebei Acad. J. 2019, 39, 149–159. [Google Scholar]
- Yang, L.; Yuan, F.; Li, G.P. Review of sustainable development indicators. Decis. Ref. 2007, 5, 56–59. [Google Scholar]
- The Global Reporting Initiative—Sustainability Reporting Guidelines. Available online: https://www.globalreporting.org/SiteCollectionDocuments/The-GRI-Guidelines-to-report-sustainability.pdf (accessed on 25 February 2020).
- Indicators of Sustainable Development: Guidelines and Methodologies. Available online: https://sustainabledevelopment.un.org/content/documents/indisd-mg2001.pdf (accessed on 25 February 2020).
- Understanding the Nexus: Background Paper for the Bonn2011 Conference. Available online: https://mediamanager.sei.org/documents/Publications/SEI-Paper-Hoff-UnderstandingTheNexus-2011.pdf (accessed on 25 February 2020).
- The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; Food and Agriculture Organization of the United Nations: Roma, Italy, 2014.
- Verburg, P.H.; Erb, K.H.; Mertz, O.; Espindola, G. Land System Science: Between global challenges and local realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Chen, D.; Goldfarb, L.; Hackmann, H.; Lee, Y.T.; Mokhele, K.; Ostrom, E.; Raivio, K.; Rockstrom, J.; Schellnhuber, H.J.; et al. Earth System Science for Global Sustainability: Grand Challenges. Science 2010, 330, 916–917. [Google Scholar] [CrossRef] [Green Version]
- Science Plan and Implementation Strategy 2016–2021. Available online: https://glp.earth/sites/default/files/uploads/glpscienceplan_25_10_16.pdf (accessed on 25 February 2020).
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.Q.; Xu, E.Q.; Zhu, H.Y. An ecological-living-industrial land classification system and its spatial distribution in China. Resour. Sci. 2015, 37, 1332–1338. [Google Scholar]
- Liu, J.L.; Liu, Y.S.; Li, Y. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Geogr. Sin. 2017, 72, 1290–1304. [Google Scholar]
- Liao, G.T.; He, P.; Gao, X.S.; Deng, L.J.; Zhang, H.; Feng, N.N.; Zhou, W.; Deng, O.P. The Production-Living-Ecological Land Classification System and Its Characteristics in the Hilly Area of Sichuan Province, Southwest China Based on Identification of the Main Functions. Sustainability 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T. Study on the Zoning of the Production-living-ecological Functions—A Case Study of Chongqing. Master’s Thesis, Shandong Agricultural University, Tai’an, China, April 2018. [Google Scholar]
- Zhang, Y.L. Comprehensive Evaluation on the Ecological-Economic-Social Capacity of the Contiguous Poverty Stricken Areas: Case Studies in Enshi and the Southeast of Chongqing. Master’s Thesis, Central China Normal University, Wuhan, China, June 2016. [Google Scholar]
- Hong, H.K. Research on the Rural Space Optimization of Chongqing City from a Coordination of “Sansheng” Function. Ph.D. Thesis, Southwest University, Chongqing, China, June 2016. [Google Scholar]
- Zhang, C.H. Study on Conflict Measure and Optimization of Coastal Zone Based on the Ecological- Production-Living Spaces: A case Study of Zhuanghe in Dalian. Ph.D. Thesis, Liaoning Normal University, Dalian, China, June 2016. [Google Scholar]
- Shirvani Dastgerdi, A.; Sargolini, M.; Broussard Allred, S.; Chatrchyan, A.; De Luca, G. Climate Change and Sustaining Heritage Resources: A Framework for Boosting Cultural and Natural Heritage Conservation in Central Italy. Climate 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Jin, F.J.; Song, Z.Y.; Liu, Y. Spatial coupling analysis of regional economic development and environmental, pollution in China. J. Geogr. Sci. 2013, 23, 525–537. [Google Scholar] [CrossRef]
- Wu, Y.M.; Lang, D.F.; Zhang, Z.H.; Zhang, Y. Coordinative Degree Model of Environment-Economy System and It’s Application. China Popul. Resour. Environ. 1996, 6, 51–54. [Google Scholar]
- Liu, N.N.; Liu, C.Z.; Xia, Y.F.; Da, B.W. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecol. Indic. 2018, 93, 1163–1175. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiao, F.C.; Ren, L.J.; Xu, X.G.; Wang, J.C.; Wang, X. Coupling coordination relationship between urbanization and atmospheric environment security in Jinan City. J. Clean Prod. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Shen, L.Y.; Huang, Y.L.; Huang, Z.H.; Lou, Y.L.; Ye, G.; Wong, S.W. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Song, Q.J.; Zhou, N.; Liu, T.L.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Li, L.Y.; Weng, G.M. An integrated approach for spatial analysis of the coupling relationship between tourism footprint and environment in the Beijing-Tianjin-Hebei region of China. Asia Pac. J. Tour. Res. 2016, 21, 1198–1213. [Google Scholar] [CrossRef]
- Guo, A.N.; Zhao, Z.Q.; Yuan, Y.; Wang, Y.Y.; Li, X.Z.; Xu, R.C. Quantitative correlations between soil and plants in reclaimed mining dumps using a coupling coordination degree mode. R. Soc. Open Sci. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Li, H. Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration. Sustainability 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.S.; He, W.J.; Shen, J.Q.; Degefu, D.M.; Yuan, L.; Kong, Y. Coupling and Coordination Degrees of the Core Water-Energy-Food Nexus in China. Int. J. Environ. Res. Public Health 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ying, Z.X.; Zhang, H.; Ge, G.; Liu, Q.J. Comprehensive Assessment of Urbanization Coordination: A Case Study of Jiangxi Province, China. Chin. Geogr. Sci. 2019, 29, 488–502. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zhao, W.N.; Gu, C.L. Urbanization and Rural Development in the Beijing-Tianjin-Hebei Metropolitan Region: Coupling-Degree Model. J. Urban Plan. Dev 2017, 143, 12. [Google Scholar] [CrossRef]
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn/ (accessed on 24 April 2019).
- Socioeconomic Data and Applications Center. Available online: https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod (accessed on 20 May 2019).
- Gao, F.; Zhao, X.Y.; Song, X.; Wang, B.; Wang, P.; Niu, Y.; Wang, W.; Huang, C. Connotation and Evaluation Index System of Beautiful China for SDGs. Adv. Earth Sci. 2019, 34, 295–305. [Google Scholar]
- Zhang, J. Assessment of Land Space Utilization Quality and Its Coupling and Coordination Based On the Three Eco-Space Concept—A Case Study of the Southern Jiangsu Region. Master’s Thesis, Nanjing Agricultural University, Nangjing, China, June 2017. [Google Scholar]
- Fang, C. China’s New Urbanization Development Report; Science Press: Beijing, China, 2014. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2010, 34, 3864–3870. [Google Scholar] [CrossRef]
- Liu, P.D.; Zhang, X. Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method. Int. J. Prod. Res. 2011, 49, 637–646. [Google Scholar] [CrossRef]
- Li, L.; Liu, F.; Li, C.B. Customer satisfaction evaluation method for customized product development using Entropy weight and Analytic Hierarchy Process. Comput. Ind. Eng. 2014, 77, 80–87. [Google Scholar] [CrossRef]
- Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [Google Scholar] [CrossRef]
- Liao, Z.B. Quantitative Assessment of Coordinated Growth Between Environment and Economy and Its Classfication System. Guang Zhou Huan Jing Ke Xue 1996, 11, 76–82. [Google Scholar]
- Jiang, L.; Bai, L.; Wu, Y.M. Coupling and Coordinating Degrees of Provincial Economy, Resources and Environment in China. J. Nat. Resour. 2017, 32, 788–799. [Google Scholar]
- Lu, H.; Zhou, L.; Chen, Y.; An, Y.; Hou, C. Degree of coupling and coordination of eco-economic system and the influencing factors: A case study in Yanchi County, Ningxia Hui Autonomous Region, China. J. Arid Land 2017, 9, 446–457. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.L.; Li, Q.; Wang, J.K. Temporal and Spatial Changes in Coupling and Coordinating Degree of New Urbanization and Ecological-Environmental Stress in China. Sustainability 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Guo, Y.R.; Yuen, K.F.; Woo, S.; Shi, W.J. Association between New Urbanization and Sustainable Transportation: A Symmetrical Coupling Perspective. Symmetry-Basel 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Q.; Da, L.J.; Tang, Z.Y.; Fang, H.J.; Song, K.; Fang, J.Y. Ecological consequences of rapid urban expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Chen, J.F.; Chang, K.T.; Karacsonyi, D.; Zhang, X.L. Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat Int. 2014, 43, 61–71. [Google Scholar] [CrossRef]
Subsystem | Indicator (Unit) | Description | Positive (+) or Negative (−) | |
---|---|---|---|---|
Production space subsystem | Energy intensity (ton coal equivalent/yuan) [46] | S1 | Energy consumed per unit of GDP | − |
Agriculture production efficiency (ten thousand yuan/km2) [47] | S2 | GDP in primary sector per unit agricultural area | + | |
Industrial output value above scale (RMB) [47] | S3 | Gross industrial output value above designated size | + | |
Land reclamation rate (%) [47] | S4 | Cultivated area percentage in total land area | + | |
Ecological space subsystem | NDVI (dimensionless) [46] | S5 | Extent of vegetation coverage in the area | + |
PM2.5 (μg/m3) [46] | S6 | PM2.5 content concentration in air | − | |
Ecological land surface ratio (%) [46] | S7 | Proportion of ecological land area in total land area | + | |
NO2 (ton) [48] | S8 | Nitrogen dioxide emissions | − | |
Living space subsystem | Population density (cap/km2) [47] | S9 | Population of land per unit area | − |
Service industry efficiency (ten thousand yuan/km2) [47] | S10 | GDP of tertiary sectors (services) per unit construction land area | + | |
Night light index (dimensionless) [49] | S11 | Spatial distribution of city lights at night | − | |
Per capita food possession (ton per capital) [47] | S12 | Cereal amount per capita | + |
Indicator (Unit) | Weight in 2005 | Weight in 2010 | Weight in 2015 | |
---|---|---|---|---|
Energy intensity (ton ce/yuan) | S1 | 0.01 | 0.01 | 0.01 |
Agriculture production efficiency (ten thousand yuan/km2) | S2 | 0.25 | 0.29 | 0.28 |
Industrial output value above scale (RMB) | S3 | 0.57 | 0.51 | 0.52 |
Land reclamation rate (%) | S4 | 0.17 | 0.19 | 0.19 |
NDVI (dimensionless) | S5 | 0.13 | 0.10 | 0.12 |
PM2.5 (μg/m3) | S6 | 0.22 | 0.22 | 0.21 |
Ecological efficiency (%) | S7 | 0.62 | 0.63 | 0.62 |
NO2 (ton) | S8 | 0.03 | 0.05 | 0.06 |
Population density (cap/km2) | S9 | 0.02 | 0.01 | 0.01 |
Service industry efficiency (ten thousand yuan/km2) | S10 | 0.20 | 0.19 | 0.18 |
Night light index (dimensionless) | S11 | 0.60 | 0.51 | 0.50 |
Per capita food possession (ton per capital) | S12 | 0.18 | 0.30 | 0.32 |
Classes | Interval Value | Classes | Interval Value |
---|---|---|---|
Seriously unbalanced (SeU) | 0 < D ≤ 0.2 | Barely balanced (BB) | 0.5 < D ≤ 0.6 |
Moderately unbalanced (MU) | 0.2< D ≤ 0.4 | Favourably balanced (FB) | 0.6 < D ≤ 0.8 |
Slightly unbalanced (SU) | 0.4 < D ≤ 0.5 | Superiorly balanced (SB) | 0.8 < D ≤ 1.0 |
Year | Maximum (City Name) | Minimum (City Name) | Average | Standard Deviation |
---|---|---|---|---|
2005 | 0.750 (Dongguan) | 0.300 (Haibei Tibetan Autonomous Prefecture) | 0.435 | 0.052 |
2010 | 0.646 (Foshan) | 0.296 (Haibei Tibetan Autonomous Prefecture) | 0.452 | 0.054 |
2015 | 0.687 (Foshan) | 0.296 (Haibei Tibetan Autonomous Prefecture) | 0.445 | 0.061 |
Classes | SeU | MU | SU | BB | FB | SB | Total of 2005 |
---|---|---|---|---|---|---|---|
SeU | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MU | 0 | 53 | 24 | 0 | 0 | 0 | 77 |
SU | 0 | 0 | 201 | 36 | 0 | 0 | 237 |
BB | 0 | 0 | 2 | 17 | 2 | 0 | 21 |
FB | 0 | 0 | 0 | 3 | 2 | 0 | 5 |
SB | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total of 2010 | 0 | 53 | 227 | 56 | 4 | 0 | 340 |
Classes | SeU | MU | SU | BB | FB | SB | Total of 2010 |
---|---|---|---|---|---|---|---|
SeU | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MU | 0 | 51 | 2 | 0 | 0 | 0 | 53 |
SU | 0 | 24 | 193 | 10 | 0 | 0 | 227 |
BB | 0 | 0 | 22 | 33 | 1 | 0 | 56 |
FB | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
SB | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total of 2015 | 0 | 75 | 217 | 43 | 5 | 0 | 340 |
NAME | CCD 2005 | CCD 2010 | CCD 2015 | NAME | CCD 2005 | CCD 2010 | CCD 2015 |
---|---|---|---|---|---|---|---|
Beijing | 0.498 | 0.494 | 0.498 | Wuhan | 0.482 | 0.476 | 0.506 |
Tianjin | 0.464 | 0.487 | 0.491 | Changsha | 0.496 | 0.528 | 0.565 |
Shijiazhuang | 0.464 | 0.487 | 0.489 | Guangzhou | 0.529 | 0.523 | 0.551 |
Taiyuan | 0.472 | 0.471 | 0.469 | Nanning | 0.397 | 0.413 | 0.420 |
Huhhot | 0.489 | 0.496 | 0.481 | Haikou | 0.458 | 0.482 | 0.483 |
Shenyang | 0.505 | 0.523 | 0.481 | Chongqing | 0.466 | 0.479 | 0.508 |
Changchun | 0.489 | 0.502 | 0.465 | Chengdu | 0.484 | 0.526 | 0.551 |
Harbin | 0.482 | 0.501 | 0.473 | Guiyang | 0.464 | 0.473 | 0.499 |
Shanghai | 0.526 | 0.515 | 0.492 | Kunming | 0.469 | 0.475 | 0.484 |
Nanjing | 0.495 | 0.523 | 0.549 | Lhasa | 0.385 | 0.361 | 0.364 |
Hangzhou | 0.523 | 0.541 | 0.561 | Xi’an | 0.461 | 0.495 | 0.485 |
Hefei | 0.462 | 0.460 | 0.477 | Lanzhou | 0.401 | 0.410 | 0.407 |
Fuzhou | 0.536 | 0.561 | 0.603 | Xining | 0.436 | 0.453 | 0.471 |
Nanchang | 0.426 | 0.447 | 0.464 | Yinchuan | 0.469 | 0.496 | 0.478 |
Jinan | 0.508 | 0.516 | 0.523 | Urumqi | 0.359 | 0.381 | 0.373 |
Zhengzhou | 0.493 | 0.527 | 0.562 | National averages | 0.435 | 0.452 | 0.445 |
Province/Autonomous Region | Prefecture Level City/Autonomous Prefecture | CCD 2005 | CCD 2010 | CCD 2015 |
---|---|---|---|---|
Shanxi | Taiyuan | 0.472 | 0.471 | 0.469 |
Inner Mongolia | Ulaanchab | 0.391 | 0.386 | 0.368 |
Shanghai | Shanghai | 0.526 | 0.515 | 0.492 |
Shandong | Laiwu | 0.524 | 0.483 | 0.479 |
Hubei | E’zhou | 0.528 | 0.480 | 0.478 |
Hubei | Enshi Tujia and Miao | 0.460 | 0.442 | 0.418 |
Hunan | Shaoyang | 0.419 | 0.418 | 0.415 |
Guangdong | Shenzhen | 0.603 | 0.548 | 0.544 |
Guangdong | Dongguan | 0.750 | 0.533 | 0.491 |
Guangxi | Hezhou | 0.380 | 0.379 | 0.352 |
Sichuan | Aba Tibetan and Qiang | 0.351 | 0.336 | 0.327 |
Yunnan | Lijiang | 0.398 | 0.393 | 0.384 |
Yunnan | Wenshan Zhuang and Miao | 0.454 | 0.444 | 0.423 |
Yunnan | Nujiang Dong | 0.392 | 0.386 | 0.382 |
Yunnan | Diqing Tibetan | 0.376 | 0.371 | 0.347 |
Tibet | Shigatse | 0.340 | 0.330 | 0.322 |
Tibet | Chamdo | 0.419 | 0.411 | 0.355 |
Tibet | Lhokha | 0.337 | 0.318 | 0.312 |
Tibet | Nagchu | 0.457 | 0.419 | 0.404 |
Tibet | Ngari | 0.476 | 0.450 | 0.446 |
Tibet | Nyingchi | 0.356 | 0.344 | 0.320 |
Gansu | Wuwei | 0.420 | 0.418 | 0.382 |
Gansu | Jiuquan | 0.361 | 0.356 | 0.345 |
Qinghai | Haibei Tibetan | 0.300 | 0.296 | 0.296 |
Qinghai | Golog Tibetan | 0.393 | 0.381 | 0.344 |
Xinjiang | Khotan | 0.357 | 0.354 | 0.350 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Jiang, D.; Fu, J.; Lin, G.; Zhang, J. Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability 2020, 12, 2009. https://doi.org/10.3390/su12052009
Wang D, Jiang D, Fu J, Lin G, Zhang J. Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability. 2020; 12(5):2009. https://doi.org/10.3390/su12052009
Chicago/Turabian StyleWang, Di, Dong Jiang, Jingying Fu, Gang Lin, and Jialun Zhang. 2020. "Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model" Sustainability 12, no. 5: 2009. https://doi.org/10.3390/su12052009
APA StyleWang, D., Jiang, D., Fu, J., Lin, G., & Zhang, J. (2020). Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability, 12(5), 2009. https://doi.org/10.3390/su12052009