Aquaculture Production and Its Environmental Sustainability in Thailand: Challenges and Potential Solutions
Abstract
:1. Introduction
2. Data Collection and Methods
3. Trends in Aquaculture Supply in Thailand
3.1. Yield of Aquaculture Production
3.2. Diversity of Species Produced
4. The Effects of Aquaculture on the Environment
4.1. Land Cover Change
4.2. Degradation of Mangrove Forest
4.3. Impact of Exotic Species
4.4. Water Pollution
5. Prospects for Sustainable Aquaculture in Thailand
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Taxon | Yields of Aquaculture Production (Tons) | Average Taxonomic Composition of Aquaculture Production (Tons) | Percentage of Taxonomic Composition of Aquaculture Production | ||||
---|---|---|---|---|---|---|---|
1995 | 2000 | 2005 | 2010 | 2015 | |||
Fish | |||||||
Mytilidae | 55,395 | 88,759 | 270,677 | 123,879 | 115,543 | 149,521 ± 83,179 | 14.9 |
Perna viridis | 51,184 | 88,759 | 270,677 | 123,879 | 115,543 | 149,062 ± 8378 | 14.9 |
Musculus senhousia | 4211 | - | - | - | - | 878 ± 1971 | <0.1 |
Cichlidae | 76,057 | 82,391 | 203,896 | 204,726 | 205,974 | 147,807 ± 61,864 | 14.7 |
Oreochromis niloticus | 76,054 | 82,363 | 203,737 | 204,680 | 205,896 | 147,729 ± 61,852 | 14.7 |
Oreochromis mossambicus | 3 | 28 | 159 | 46 | 78 | 77 ± 62 | <0.1 |
Clariidae | 44,120 | 76,000 | 142,205 | 140,763 | 114,179 | 104,625 ± 34,816 | 10.4 |
Clarias spp. | 44,120 | 76,000 | 142,205 | 140,763 | 114,179 | 104,625 ± 34,816 | 10.4 |
Arcidae | 14,403 | 45,657 | 56,853 | 40,979 | 58,991 | 54,892 ± 20,813 | 5.5 |
Anadara spp. | 14,403 | 45,657 | 56,853 | 40,979 | 58,991 | 54,892 ± 20,813 | 5.5 |
Cyprinidae | 33,599 | 54,482 | 70,361 | 46,490 | 33,461 | 49,783 ± 13,155 | 5.0 |
Cyprinus spp. | 3556 | 5539 | 5036 | 2417 | 1285 | 4341 ± 2394 | 0.4 |
Barbonymus gonionotus | 27,432 | 46,276 | 60,643 | 42,049 | 30,498 | 42,442 ± 11,441 | 4.2 |
Chinese major carps mixed species | 653 | 438 | 285 | 354 | 200 | 363 ± 226 | <0.1 |
Labeo rohita | 1480 | 1172 | 3196 | 1169 | 1101 | 1848 ± 1108 | 0.2 |
Cirrhinus mrigala | 478 | 1052 | 1201 | 501 | 377 | 790 ± 343 | 0.1 |
Osphronemidae | 17,321 | 23,233 | 41,377 | 38,957 | 18,621 | 29,125 ± 9,231 | 2.9 |
Trichopodus pectoralis | 16,714 | 21,577 | 35,867 | 34,419 | 14,956 | 26,142 ± 8,053 | 2.6 |
Trichopodus spp. | 259 | 169 | 58 | 5 | 4 | 112 ± 143 | <0.1 |
Osphronemus goramy | 348 | 1487 | 5452 | 4533 | 3661 | 2827 ± 1591 | 0.3 |
Pangasiidae | 7308 | 13,231 | 27,252 | 27,455 | 19,790 | 19,488 ± 7387 | 1.9 |
Pangasianodon hypophthalmus | 7308 | 13,226 | 26,446 | 27,027 | 19,790 | 19,157 ± 7173 | 1.9 |
Pangasius larnaudii | - | 5 | 806 | 428 | 19,060 | 730 ± 33 | <0.1 |
Ostreidae | 23,037 | 13,556 | 19,106 | 10,757 | 19,871 | 19,121 ± 5,885 | 1.9 |
Saccostrea cucullata | 23,037 | 13,556 | 19,106 | 10,757 | 19,871 | 19,121 ± 5885 | 1.9 |
Latidae | 3882 | 7752 | 14,219 | 17,415 | 17,250 | 11,936 ± 4939 | 1.2 |
Lates calcarifer | 3882 | 7752 | 14,219 | 17,415 | 17,250 | 11,936 ± 4939 | 1.2 |
Channidae | 6430 | 4527 | 12,507 | 4639 | 3641 | 6330 ± 2453 | 0.6 |
Channa striata | 5791 | 4447 | 12,300 | 4340 | 3075 | 5968 ± 2484 | 0.6 |
Channa micropeltes | 639 | 80 | 207 | 299 | 566 | 362 ± 295 | <0.1 |
Serranidae | 674 | 1332 | 2582 | 2790 | 2258 | 2139 ± 906 | 0.2 |
Epinephelus spp. | 674 | 1332 | 2582 | 2790 | 2258 | 2139 ± 906 | 0.2 |
Anabantidae | 949 | 470 | 2965 | 486 | 223 | 871 ± 773 | 0.1 |
Anabas testudineus | 949 | 470 | 2965 | 486 | 223 | 871 ± 773 | 0.1 |
Eleotridae | 67 | 5 | 98 | 114 | 78 | 70 ± 46 | <0.1 |
Oxyeleotris marmorata | 67 | 5 | 98 | 114 | 78 | 70 ± 46 | <0.1 |
Synbranchidae | 1 | 38 | 65 | - | - | 44 ± 115 | <0.1 |
Monopterus albus | 1 | 38 | 65 | - | - | 44 ± 115 | <0.1 |
Notopteridae | 49 | 5 | 28 | 1 | 4 | 12 ± 19 | <0.1 |
Notopterus spp. | 49 | 5 | 28 | 1 | 4 | 12 ± 19 | <0.1 |
Mugilidae | - | - | 28 | - | - | 2 ± 6 | <0.1 |
Mullet group | - | - | 28 | - | - | 2 ± 6 | <0.1 |
Fish mixed group | 2754 | 5458 | 5568 | 5945 | 3378 | 4944 ± 1508 | 0.5 |
Shrimp | |||||||
Penaeidae | 258,398 | 309,206 | 401,150 | 559,427 | 294,703 | 379,601 ± 134,883 | 37.9 |
Penaeus merguiensis | 1813 | 3562 | 508 | 318 | 237 | 1391 ± 1328 | 0.1 |
Penaeus monodon | 255,890 | 304,988 | 26,055 | 5105 | 12,098 | 119,625 ± 120,971 | 11.9 |
Litopenaeus vannamei | - | - | 374,487 | 553,899 | 281,918 | 258,143 ± 239,846 | 25.7 |
Metapenaeus spp. | 695 | 656 | 100 | 105 | 450 | 442 ± 421 | <0.1 |
Palaemonidae | 7792 | 9917 | 28,740 | 22,350 | 16,236 | 18,467 ± 9723 | 1.8 |
Macrobrachium rosenbergii | 7792 | 9917 | 28,740 | 22,350 | 16,236 | 18,467 ± 9723 | 1.8 |
Shrimp mixed group | 1142 | 656 | 100 | 217 | 37 | 480 ± 473 | <0.1 |
Carb | |||||||
Carb mixed group | 45 | 9 | 15 | - | - | 22 ± 36 | <0.1 |
Other aquatic animals | 185 | 1400 | 4419 | 4673 | 4300 | 3261 ± 1559 | 0.3 |
Total aquaculture production | 553,608 | 738,084 | 1,304,211 | 1,252,063 | 928,538 | 1,002,540 ± 309,395 | 100 |
Province | Year (ha) | Average | ||||
---|---|---|---|---|---|---|
1995 | 2000 | 2005 | 2010 | 2015 | ||
Trat | 2621 | 1586 | 3472 | 2238 | 1548 | 2075 ± 608 |
Chanthaburi | 16253 | 13802 | 6175 | 6361 | 5824 | 7995 ± 2989 |
Rayong | 1386 | 663 | 1269 | 1575 | 1088 | 1244 ± 349 |
Chin Buri | 1553 | 1778 | 635 | 1730 | 540 | 1265 ± 615 |
hachengsao | 2850 | 9096 | 8659 | 4101 | 3612 | 6295 ± 2526 |
Prahin Buri | 362 | 1248 | 1923 | 1888 | 985 | 1351 ± 659 |
Samut Prakan | 5879 | 8499 | 7327 | 5112 | 7773 | 7193 ± 1494 |
Bangkok | 2811 | 2970 | 2957 | 875 | 3757 | 2626 ± 868 |
Samut Sakhon | 6273 | 5998 | 2979 | 4833 | 6774 | 5140 ± 1357 |
Samut Songkhram | 4387 | 5878 | 3948 | 4539 | 5577 | 5358 ± 836 |
Phetchaburi | 1809 | 2102 | 1286 | 2724 | 4728 | 2563 ± 1450 |
Prachuap Khiri Khan | 1004 | 1967 | 1644 | 2348 | 1049 | 1977 ± 975 |
Chumphon | 2248 | 1296 | 2946 | 1792 | 944 | 1870 ± 530 |
Surat Thani | 8378 | 4814 | 12887 | 7890 | 6496 | 8749 ± 2650 |
Nakhon Si Thanmmarat | 10734 | 11317 | 8233 | 3848 | 2493 | 7215 ± 3342 |
Songkhla | 2975 | 2281 | 4265 | 1841 | 1220 | 2483 ± 989 |
Phatthalung | 249 | 566 | 1097 | 190 | 90 | 361 ± 282 |
Pattani | 892 | 819 | 1571 | 920 | 244 | 864 ± 426 |
Narathiwat | 13 | 20 | 82 | 54 | 27 | 36 ± 18 |
Ranong | 959 | 666 | 1204 | 929 | 656 | 871 ± 257 |
Phangnga | 1295 | 1158 | 1604 | 1173 | 729 | 1339 ± 389 |
Phuket | 340 | 248 | 316 | 266 | 129 | 288 ± 79 |
Krabi | 1141 | 969 | 1040 | 1351 | 603 | 1152 ± 288 |
Trang | 1208 | 1877 | 1492 | 1514 | 772 | 1345 ± 366 |
Satun | 1602 | 1281 | 1872 | 1480 | 1350 | 1572 ± 299 |
References
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2016; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Thilsted, S.H.; Thorne-Lyman, A.; Webb, P.; Bogard, J.R.; Subasinghe, R.; Phillips, M.J.; Allison, E.H. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 2016, 61, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Allison, E.H. Aquaculture, Fisheries, Poverty and Food Security; The Worldfish Center: Penang, Malaysia, 2011. [Google Scholar]
- Beveridge, M.C.; Thilsted, S.; Phillips, M.; Metian, M.; Troell, M.; Hall, S. Meeting the food and nutrition needs of the poor: The role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 2013, 83, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Tacon, A.G.; Metian, M. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- Rittenschober, D.; Stadlmayr, B.; Nowak, V.; Du, J.; Charrondiere, U.R. Report on the development of the FAO/INFOODS user database for fish and shellfish (uFiSh)–Challenges and possible solutions. Food Chem. 2016, 193, 112–120. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Agnew, D.J.; Pearce, J.; Pramod, G.; Peatman, T.; Watson, R.; Beddington, J.R.; Pitcher, T.J. Estimating the worldwide extent of illegal fishing. PLoS ONE 2009, 4, e4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, D. Farmed Fish Drive Sea Change in Global Consumption. Available online: https://www.nature.com/news/farmed-fish-drive-sea-change-in-global-consumption-1.20223 (accessed on 30 January 2019).
- DoF. Fisheries Statistics of Thailand 2016; Department of Fisheries: Bangkok, Thailand, 2018. [Google Scholar]
- Froehlich., H.E.; Gentry, R.R.; Halpern, B.S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018, 2, 1745–1750. [Google Scholar] [CrossRef]
- FAO. The World’s Mangroves 1980–2005; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.S. The political ecology of mangrove forest restoration in Thailand: Institutional arrangements and power dynamics. Land Use Policy 2018, 78, 503–514. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Mooney, H.; Beveridge, M.; Clay, J.; Folke, C.; Kautsky, N.; Lubchenco, J.; Primavera, J.; Williams, M. Nature’s subsidies to shrimp and salmon farming. Science 1998, 282, 883–884. [Google Scholar] [CrossRef]
- Sampantamit, T.; Ho, L.; Van Echelpoel, W.; Lachat, C.; Goethals, P. Links and Trade-Offs between Fisheries and Environmental Protection in Relation to the Sustainable Development Goals in Thailand. Water 2020, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Lutaladio, N. Horticulture, biodiversity and nutrition. J. Food Comp. Anal. 2010, 23, 481–663. [Google Scholar] [CrossRef]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Nutrition: Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Lachat, C.; Raneri, J.E.; Smith, K.W.; Kolsteren, P.; Van Damme, P.; Verzelen, K.; Penafiel, D.; Vanhove, W.; Kennedy, G.; Hunter, D. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl. Acad. Sci. USA 2018, 115, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, M.; McBurney, R.P.; Broin, M.; Beentje, H.J. Linking biodiversity, food and nutrition: The importance of plant identification and nomenclature. J. Food Compos. Anal. 2010, 23, 486–498. [Google Scholar] [CrossRef]
- DoF. The Master Plan. on Thailand’s Aquaculture Development (2017–2021); Department of Fisheries: Bangkok, Thailand, 2019. [Google Scholar]
- Office of the National Economic and social Development Council. The National Economic and Social Development Plan. Available online: https://www.nesdb.go.th/main.php?filename=develop_issue (accessed on 1 December 2019).
- Dey, M.M.; Sheriff, N.; Bjørndal, T. Aquaculture Development in Asia: Current Status, Economics and Future Outlook; Institute for Research in Economics and Business Administration: Bergen, Norway, 2006. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 1995; Department of Fisheries: Bangkok, Thailand, 1998. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 1996; Department of Fisheries: Bangkok, Thailand, 1999. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 1997; Department of Fisheries: Bangkok, Thailand, 2000. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 1998; Department of Fisheries: Bangkok, Thailand, 2001. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 1999; Department of Fisheries: Bangkok, Thailand, 2002. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2000; Department of Fisheries: Bangkok, Thailand, 2003. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2001; Department of Fisheries: Bangkok, Thailand, 2004. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2002; Department of Fisheries: Bangkok, Thailand, 2004. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2003; Department of Fisheries: Bangkok, Thailand, 2005. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2004; Department of Fisheries: Bangkok, Thailand, 2006. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2005; Department of Fisheries: Bangkok, Thailand, 2007. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2006; Department of Fisheries: Bangkok, Thailand, 2008. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2007; Department of Fisheries: Bangkok, Thailand, 2009. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2008; Department of Fisheries: Bangkok, Thailand, 2010. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2009; Department of Fisheries: Bangkok, Thailand, 2011. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2010; Department of Fisheries: Bangkok, Thailand, 2012. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2011; Department of Fisheries: Bangkok, Thailand, 2013. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2012; Department of Fisheries: Bangkok, Thailand, 2014. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2013; Department of Fisheries: Bangkok, Thailand, 2015. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2014; Department of Fisheries: Bangkok, Thailand, 2016. [Google Scholar]
- DoF. Fisheries Statistics of Thailand 2015; Department of Fisheries: Bangkok, Thailand, 2017. [Google Scholar]
- Boonyawiwat, V.; Patanasatienkul, T.; Kasornchandra, J.; Poolkhet, C.; Yaemkasem, S.; Hammell, L.; Davidson, J. Impact of farm management on expression of early mortality syndrome/acute hepatopancrea ticnecrosis disease (EMS/AHPND) on penaeid shrimp farms in Thailand. J. Fish Dis. 2017, 40, 649–659. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 1998; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Flegel, T. Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 2006, 258, 1–33. [Google Scholar] [CrossRef]
- Chalermwat, K.; Szuster, B.; Flaherty, M. Shellfish aquaculture in Thailand. Aquac. Econ. Manag. 2003, 7, 249–261. [Google Scholar] [CrossRef]
- DoF. Statistics of Marine Shellfish Culture Survey 2015; Department of Fisheries: Bangkok, Thailand, 2017. [Google Scholar]
- Diana, J.S. Aquaculture production and biodiversity conservation. BioScience 2009, 59, 27–38. [Google Scholar] [CrossRef]
- Tanyaros, S.; Crookall, D. The 2004 Indian Ocean Tsunami: Impact on and Rehabilitation of Fisheries and Aquaculture in Thailand. Available online: https://www.intechopen.com/books/the-tsunami-threat-research-and-technology/the-2004-indian-ocean-tsunami-impact-on-and-rehabilitation-of-fisheries-and-aquaculture-in-thailand (accessed on 3 March 2020).
- DMCR. Mangrove Area in the Past. Available online: https://km.dmcr.go.th/en/c_11/d_690 (accessed on 16 July 2018).
- Menasveta, P. Mangrove destruction and shrimp culture systems. Fisheries 1997, 50, 143–151. [Google Scholar]
- DMCR. Status of Mangroves. Available online: https://km.dmcr.go.th/th/c_11/d_8201 (accessed on 26 July 2018).
- Mhaudjan, J. Situation of Mangrove Invasion in Thailand; Mangrove Conservation Office: Bangkok, Thailand, 2012. [Google Scholar]
- Hishamunda, N.; Bueno, P.B.; Ridler, N.; Yap, W.G. Analysis of Aquaculture Development in Southeast Asia; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Lebel, L.; Garden, P.; Luers, A.; Manuel-Navarrete, D.; Giap, D.H. Knowledge and innovation relationships in the shrimp industry in Thailand and Mexico. Proc. Natl. Acad. Sci. USA 2016, 113, 4585–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Cultured Aquatic Species Information Programme: Penaeus Vannamei (Boone, 1931). Available online: http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/en (accessed on 14 October 2019).
- Termvidchakorn, A.; Vidthayanon, C.; Getpetch, Y.-E.; Sorrak, P.; Paradonpanichakul, P. Alien Aquatic Species in Thailand; Inland Fisheries Resources Research and Development Institute, Department of Fisheries: Bangkok, Thailand, 2003. [Google Scholar]
- Anton, A.; Geraldi, N.R.; Lovelock, C.E.; Apostolaki, E.T.; Bennett, S.; Cebrian, J.; Krause-Jensen, D.; Marbà, N.; Martinetto, P.; Pandolfi, J.M. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 2019, 3, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Roy, D.; Harrower, C.; Dean, H.; Rorke, S.; Roy, H. Spread of a model invasive alien species, the harlequin ladybird Harmonia axyridis in Britain and Ireland. Sci. Data 2018, 5, 180239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, T.S.; Glen, A.S.; Nimmo, D.G.; Ritchie, E.G.; Dickman, C.R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. USA 2016, 113, 11261–11265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidthayanon, C. International Mechanisms for the Control. and Responsible Use of Alien Species in Aquatic Ecosystems: Report of an Ad Hoc Expert Consultation, 27–30 August 2003, Xishuangbanna, People’s Republic of China; FAO: Rome, Italy, 2005. [Google Scholar]
- ISSG. Global Invasive Species Database. Available online: http://issg.org/database/species/search.asp?st=sss&sn=&rn=Thailand&ri=19411&hci=-1&ei=-1&fr=1&sts=&lang=EN (accessed on 24 September 2019).
- ISSG. 100 of the World’s Worst Invasive Alien Species. Available online: http://issg.org/database/species/search.asp?st=100ss&fr=1&str=&lang=EN (accessed on 24 September 2019).
- Nakano, S.-I.; Yahara, T.; Nakashizuka, T. Aquatic Biodiversity Conservation and Ecosystem Services; Springer: Singapore, 2016. [Google Scholar]
- Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 2018, 652, 851–861. [Google Scholar] [CrossRef]
- Science for Environment Policy. Sustainable Aquaculture. Available online: http://ec.europa.eu/science-environment-policy (accessed on 22 October 2019).
- Cheevaporn, V.; Menasveta, P. Water pollution and habitat degradation in the Gulf of Thailand. Mar. Pollut. Bull. 2003, 47, 43–51. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, S.; Chen, D. The trends of aquacultural nitrogen budget and its environmental implications in China. Sci. Rep. 2018, 8, 10877. [Google Scholar] [CrossRef]
- Azim, M.E.; Little, D.C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality: An Introduction; Springer: Basel, Switzerland, 2015. [Google Scholar]
- Dauda, A.B. Biofloc technology: A review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Rev. Aquac. 2019, 1–18. [Google Scholar] [CrossRef]
- Emerenciano, M.; Gaxiola, G.; Cuzon, G. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. Available online: https://www.intechopen.com/books/biomass-now-cultivation-and-utilization/biofloc-technology-bft-a-review-for-aquaculture-application-and-animal-food-industry (accessed on 25 October 2019).
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- FAO. National Fishery Sector Overview Thailand. Available online: Ftp://ftp.fao.org/Fi/DOCUMENT/fcp/en/FI_CP_TH.pdf (accessed on 10 October 2016).
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, J.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Soto, D. Integrated Mariculture: A Global Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Cressey, D. Aquaculture: Future fish. Nature 2009, 458, 398–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317. [Google Scholar] [CrossRef] [PubMed]
- Sorgeloos, P. Aquaculture: The Blue Biotechnology of the Future. World Aquac. 2013, 44, 16–25. [Google Scholar]
- Boonyubol, M.; Pramokchutima, S. Trawl Fisheries in the Gulf of Thailand; 9711022133; International Center for Living Aquatic Resources Management: Manila, Philippines, 1984. [Google Scholar]
- FAO. Review of the State of World Marine Fishery Resources; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Beal, C.M.; Gerber, L.N.; Thongrod, S.; Phromkunthong, W.; Kiron, V.; Granados, J.; Archibald, I.; Greene, C.H.; Huntley, M.E. Marine microalgae commercial production improves sustainability of global fisheries and aquaculture. Sci. Rep. 2018, 8, 15064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- FAO. Report of the Special Session on Advancing Integrated Agriculture Aquaculture through Agroecology. Available online: http://www.fao.org/agroecology/database/detail/en/c/1255333/ (accessed on 21 February 2020).
- Landuyt, D.; Lemmens, P.; D’hondt, R.; Broekx, S.; Liekens, I.; Bie, T.D.; Declerck, S.A.J.; Meester, L.D.; Goethals, P.L.M. An ecosystem service approach to support integrated pond management: A case study using Bayesian belief networks-Highlighting opportunities and risks. J. Envir. Manag. 2014, 145, 79–87. [Google Scholar] [CrossRef]
- FAO. FAO Aquaculture Newsletter; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
Year | Coastal Aquaculture (Tons) | Inland Aquaculture (Tons) | Total Aquaculture Production (Tons) | % of Coastal Aquaculture | % of Inland Aquaculture | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fish | Shrimps | Mollusks | Others | Total | Fish | Shrimps | Others | Total | ||||
1995 | 5132 | 259,540 | 92,835 | 45 | 357,552 | 188,079 | 7792 | 185 | 196,056 | 553,608 | 65 | 35 |
1996 | 6235 | 239,500 | 80,183 | 132 | 326,050 | 222,511 | 5586 | 557 | 228,654 | 554,704 | 59 | 41 |
1997 | 5652 | 227,560 | 66,408 | 115 | 299,735 | 197,170 | 2159 | 848 | 200,177 | 499,912 | 60 | 40 |
1998 | 8794 | 252,731 | 106,128 | 19 | 367,672 | 220,703 | 4764 | 1456 | 226,923 | 594,595 | 62 | 38 |
1999 | 7377 | 275,542 | 158,238 | 9 | 441,166 | 242,766 | 8494 | 1352 | 252,612 | 693,778 | 64 | 36 |
2000 | 9229 | 309,862 | 147,972 | 9 | 467,072 | 259,695 | 9917 | 1400 | 271,012 | 738,084 | 63 | 37 |
2001 | 9588 | 280,007 | 244,949 | 5 | 534,549 | 262,816 | 13,311 | 3569 | 279,696 | 814,245 | 66 | 34 |
2002 | 12,251 | 264,923 | 382,918 | 10 | 660,102 | 275,130 | 15,393 | 3978 | 294,501 | 954,603 | 69 | 31 |
2003 | 14,599 | 330,725 | 357,944 | 10 | 703,278 | 328,984 | 28,151 | 3990 | 361,125 | 1,064,403 | 66 | 34 |
2004 | 17,202 | 360,289 | 358,758 | 22 | 736,271 | 486,382 | 32,583 | 4744 | 523,709 | 1,259,980 | 58 | 42 |
2005 | 16,836 | 401,250 | 346,636 | 15 | 764,737 | 506,315 | 28,740 | 4419 | 539,474 | 1,304,211 | 59 | 41 |
2006 | 18,346 | 494,401 | 314,116 | - | 826,863 | 498,378 | 25,353 | 3683 | 527,414 | 1,354,277 | 61 | 39 |
2007 | 15,523 | 523,226 | 306,571 | 11 | 845,331 | 489,086 | 32,148 | 3861 | 525,095 | 1,370,426 | 62 | 38 |
2008 | 16,004 | 506,602 | 285,739 | 23 | 808,368 | 485,060 | 33,189 | 4214 | 522,463 | 1,330,831 | 61 | 39 |
2009 | 17,851 | 575,098 | 301,789 | 41 | 894,779 | 490,093 | 26,785 | 5002 | 521,880 | 1,416,659 | 63 | 37 |
2010 | 20,205 | 559,644 | 175,615 | - | 755,464 | 469,576 | 22,350 | 4673 | 496,599 | 1,252,063 | 60 | 40 |
2011 | 19,126 | 611,194 | 186,730 | - | 817,050 | 358,823 | 21,080 | 4450 | 384,353 | 1,201,403 | 68 | 32 |
2012 | 22,330 | 609,552 | 185,861 | - | 817,743 | 431,114 | 18,702 | 4438 | 454,254 | 1,271,997 | 64 | 36 |
2013 | 19,256 | 325,395 | 216,835 | - | 561,486 | 413,536 | 18,168 | 4061 | 435,765 | 997,251 | 56 | 44 |
2014 | 19,162 | 279,907 | 183,569 | - | 482,638 | 394,915 | 16,906 | 3303 | 415,124 | 897,762 | 54 | 46 |
2015 | 19,548 | 294,740 | 194,405 | - | 508,693 | 399,309 | 16,236 | 4300 | 419,845 | 928,538 | 55 | 45 |
Year | Estimated Total Mangrove Forest Area (ha) | Mangrove Area Changes | |
---|---|---|---|
ha | % | ||
1961 | 367,900 | ||
1975 | 312,700 | −55,200 | −15 |
1979 | 287,308 | −25,392 | −8 |
1986 | 196,436 | −90,872 | −32 |
1989 | 180,559 | −15,877 | −8 |
1991 | 173,821 | −6,738 | −4 |
1993 | 168,683 | −5,138 | −3 |
1996 | 167,582 | −1,100 | −1 |
2000 | 252,765 | 85,183 | 51 |
2004 | 233,308 | −19,457 | −8 |
2009 | 244,010 | 10,702 | 5 |
2014 | 245,534 | 1,524 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampantamit, T.; Ho, L.; Lachat, C.; Sutummawong, N.; Sorgeloos, P.; Goethals, P. Aquaculture Production and Its Environmental Sustainability in Thailand: Challenges and Potential Solutions. Sustainability 2020, 12, 2010. https://doi.org/10.3390/su12052010
Sampantamit T, Ho L, Lachat C, Sutummawong N, Sorgeloos P, Goethals P. Aquaculture Production and Its Environmental Sustainability in Thailand: Challenges and Potential Solutions. Sustainability. 2020; 12(5):2010. https://doi.org/10.3390/su12052010
Chicago/Turabian StyleSampantamit, Tiptiwa, Long Ho, Carl Lachat, Nantida Sutummawong, Patrick Sorgeloos, and Peter Goethals. 2020. "Aquaculture Production and Its Environmental Sustainability in Thailand: Challenges and Potential Solutions" Sustainability 12, no. 5: 2010. https://doi.org/10.3390/su12052010
APA StyleSampantamit, T., Ho, L., Lachat, C., Sutummawong, N., Sorgeloos, P., & Goethals, P. (2020). Aquaculture Production and Its Environmental Sustainability in Thailand: Challenges and Potential Solutions. Sustainability, 12(5), 2010. https://doi.org/10.3390/su12052010