Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry
Abstract
:1. Introduction
2. Methodology and Data
2.1. Extended LMDI
2.2. Hybrid Trend Extrapolation Model
2.3. Data Source
3. Results
3.1. CO2 Emission Results
3.2. Forecasting Results
3.3. Decomposition Results of the LMDI Model
4. Discussion
4.1. Transport Intensity Factor Analysis
4.2. Average Transportation Distance Factor Analysis
4.3. Scale of Employees Factor Analysis
4.4. Energy Intensity Factor Analysis
4.5. Industrial Structure Factor Analysis
4.6. Per Capita Carrying Capacity Factor Analysis
4.7. Energy Input and Output Factor Analysis
5. Conclusions and Policy Implications
6. Limitations and Prospects of Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, X.T.; Wang, Q.; Li, R.R. Investigating factors affecting carbon emission in China and the USA: A perspective of stratified heterogeneity. J. Clean. Prod. 2018, 199, 85–92. [Google Scholar] [CrossRef]
- Zhu, B.Z.; Su, B.; Li, Y.Z. Input–output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08–2013/14. Appl. Energy 2018, 230, 1545–1556. [Google Scholar] [CrossRef]
- Cui, E.; Ren, L.; Sun, H. Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China. Environ. Sci. Pollut. Res. 2016, 23, 19667–19674. [Google Scholar] [CrossRef]
- Lin, B.; Xie, C. Reduction potential of CO2 emissions in China’s transport industry. Renew. Sustain. Energy Rev. 2014, 33, 689–700. [Google Scholar] [CrossRef]
- Ozturk, I. Measuring the impact of energy consumption and air quality indicators on climate change: Evidence from the panel of UNFCC classified countries. Environ. Sci. Pollut. Res. 2015, 22, 15459–15468. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement (1/CP.21); United Nations Framework Convention on Climate Change: Paris, UK, 2015. [Google Scholar]
- Zhang, K.; Liu, X.; Yao, J. Identifying the driving forces of CO2 emissions of China’s transport sector from temporal and spatial decomposition perspectives. Environ. Sci. Pollut. Res. 2019, 26, 17383–17406. [Google Scholar] [CrossRef]
- Green, F.; Stern, N. China’s changing economy: Implications for its carbon dioxide emissions. Clim. Policy 2017, 17, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Zhang, R.; Wang, H.; Liu, M.; Wu, Y. The benchmarks of carbon emissions and policy implications for China’s cities: Case of Nanjing. Energy Policy 2011, 39, 4785–4794. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2002–2020; China Statistics Press: Beijing, China, 2002–2020. [Google Scholar]
- Liang, Y.; Niu, D.; Wang, H.; Li, Y. Factors affecting transportation sector CO2 emissions growth in China: An LMDI decomposition analysis. Sustainability 2017, 9, 1730. [Google Scholar] [CrossRef] [Green Version]
- Zha, J.; Tan, T.; Yuan, W.; Yang, X.; Zhu, Y. Decomposition analysis of tourism CO2 emissions for sustainable development: A case study of China. Sustain. Dev. 2019. [Google Scholar] [CrossRef]
- Sun, W.; Xu, Y. Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China. J. Clean. Prod. 2016, 112, 1282–1291. [Google Scholar] [CrossRef]
- Hoekstra, R.; Van den Bergh, J.C. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.; Gan, C.; Cao, J.; Geng, Y.; Guan, D. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China). Renew. Sustain. Energy Rev. 2016, 55, 516–536. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Huang, H.C.; Mu, A.R. Properties and linkages of some index decomposition analysis methods. Energy Policy 2009, 37, 4624–4632. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Zhu, X.; Li, R. An analysis of decoupling and influencing factors of carbon emissions from the transportation sector in the Beijing-Tianjin-Hebei Area, China. Sustainability 2017, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector. Sustainability 2019, 11, 1986. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]
- Gu, S.; Fu, B.; Thriveni, T.; Fujita, T.; Ahn, J.W. Coupled LMDI and system dynamics model for estimating urban CO2 emission mitigation potential in Shanghai, China. J. Clean. Prod. 2019, 240, 118034. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zheng, W.L.; Wang, J.W. Carbon Emissions and Economic Development in Transport Industry—An Empirical Research Based on Decoupling Theory and Structure Decomposition Model. Adv. Soc. Sci. Educ. Humanit. Res. 2006, 49, 596–599. [Google Scholar]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.Y.; Chen, S.Q.; Zhang, L.X. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Tang, D.; Ma, T.; Li, Z.; Tang, J.; Bethel, B. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. Sustainability 2016, 8, 1018. [Google Scholar] [CrossRef] [Green Version]
- Meng, M.; Niu, D.; Shang, W. A small-sample hybrid model for forecasting energy-related CO2 emissions. Energy 2014, 64, 673–677. [Google Scholar] [CrossRef]
- Meng, M.; Shang, W.; Zhao, X.; Niu, D.; Li, W. Decomposition and forecasting analysis of China’s energy efficiency: An application of three-dimensional decomposition and small-sample hybrid models. Energy 2015, 89, 283–293. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Kanagawa Prefecture, Japan, 2006. [Google Scholar]
- National Development and Reform Commission of China. General Principles for Calculation of Total Production Energy Consumption; National Development and Reform Commission of China: Beijing, China, 2008. [Google Scholar]
- Kaya, Y. Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios; IPCC Response Strategies Working Group Reports; IPCC: Geneva, Switzerland, 1989. [Google Scholar]
- Greening, L.A.; Ting, M.; Davis, W.B. Decomposition of aggregate carbon intensity for freight: Trends from 10 OECD countries for the period 1971–1993. Energy Econ. 1999, 21, 331–361. [Google Scholar] [CrossRef]
- Lin, B.; Xie, X. CO2 emissions of China’s food industry: An input–output approach. J. Clean. Prod. 2016, 112, 1410–1421. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y. Features and influencing factors of carbon emissions indicators in the perspective of residential consumption: Evidence from Beijing, China. Ecol. Indic. 2016, 61, 634–645. [Google Scholar] [CrossRef]
- Liu, S.; Dang, Y.; Fang, Z.; Xie, N. Grey System Theory and Its Application; Beijing Science Press: Beijing, China, 2010. [Google Scholar]
- Zeng, B.; Meng, W. Special Time Series Oriented Grey Forecasting Modeling Method; Chongqing University Press: Chongqing, China, 2011. [Google Scholar]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Breidenich, C.; Magraw, D.; Rowley, A.; Rubin, J.W. The Kyoto protocol to the United Nations framework convention on climate change. Am. J. Int. Law 1998, 92, 315–331. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, Q.; Jin, J. Analysis of the Impact of Beijing Olympic Games on the Listed Companies in Transportation Industry. Transp. Enterp. Manag. 2008, 7, 17–18. [Google Scholar]
- Ma, Y.Y.; Wang, W.G. Character of carbon emission of logistics industry in China and its affecting factors decomposition analysis: Based on LMDI technique. Math. Pract. Theory 2013, 43, 31–42. [Google Scholar]
- Wang, W.W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Song, H.F. An Empirical Study on the Impact of Industrial Spatial Distribution on Carbon Emissions. Master’s Thesis, Jinan University, Guangdong, China, 2017. [Google Scholar]
- China Daliy. Medium and long term railway network planning (adjusted in 2008). Compr. Transp. 2008, 12, 7–9.
- Qin, F.F. Research on the Structural Characteristics of Highway Freight Transportation in China. World Commun. 2018, 32, 5–7. [Google Scholar]
- Li, X.J. Solve traffic congestion in Beijing with zero population growth. Transp. Bus 2010, 11, 42. [Google Scholar]
- Lakshmanan, T.R. Factors underlying transportation CO2 emissions in the USA: A decomposition analysis. Transp. Res. Part D Transp. Environ. 1997, 2, 1–15. [Google Scholar] [CrossRef]
- Wang, X.L.; Huang, Y.S. Decomposition of Factors Influencing Carbon Emission Intensity of Energy Consumption in Hebei Province. Math. Pract. Theory 2018, 48, 49–58. [Google Scholar]
- Ministry of Transport of the People’s Republic of China. The 12th Five Year Plan for Energy Conservation and Emission Reduction of Highway and Waterway Transportation; China Economic Publishing House: Beijing, China, 2011.
- Osorio-Tejada, J.L.; Llera-Sastresa, E.; Hariza Hashim, A. Well-to-wheels approach for the environmental impact assessment of road freight services. Sustainability 2018, 10, 4487. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J. Effects of the Development of High-speed Rail on the Changes of Comprehensive Passenger Transport Structure. Integr. Transp. 2019, 41, 7–11. [Google Scholar]
- Kobayashi, S.; Plotkin, S.; Ribeiro, S.K. Energy efficiency technologies for road vehicles. Energy Effic. 2009, 2, 125–137. [Google Scholar] [CrossRef]
- Dong, F.; Gao, X.; Li, J.; Zhang, Y.; Liu, Y. Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches. Int. J. Environ. Res. Public Health 2018, 15, 2712. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Gao, D. A Research on the Factors Influencing Carbon Emission of Transportation Industry in “the Belt and Road Initiative” Countries Based on Panel Data. Energies 2019, 12, 2405. [Google Scholar] [CrossRef] [Green Version]
Change Scheme | LMDI Equation |
---|---|
Fuels | Factors (kgCO2/TJ) | Average Low Calorific Value (KJ/kg) | Standard Coal Coefficient (kgce/m3; kgce/kg) |
---|---|---|---|
Coal | 94,600 | 20,908 | 0.7143 |
Coke | 107,000 | 28,435 | 0.9714 |
Crude oil | 73,300 | 41,816 | 1.4286 |
Gasoline | 70,000 | 43,070 | 1.4714 |
Kerosene | 71,900 | 43,070 | 1.4714 |
Diesel oil | 74,100 | 42,652 | 1.4571 |
Fuel oil | 77,400 | 41,816 | 1.4286 |
Natural gas | 56,100 | 35,544 | 1.2143 |
Year | GDP (106 Yuan) | Industry Added Value (106 Yuan) | GDP Index | Transportation Industry Index |
---|---|---|---|---|
2001 | 197,334.21 | 10,662.93 | 851.90 | 823.60 |
2002 | 215,352.10 | 11,422.69 | 912.60 | 898.80 |
2003 | 236,963.98 | 12,122.37 | 968.50 | 989.00 |
2004 | 260,923.94 | 13,878.46 | 1108.80 | 1089.00 |
2005 | 290,658.25 | 15,433.03 | 1233.00 | 1213.10 |
2006 | 327,628.46 | 16,971.32 | 1355.90 | 1367.40 |
2007 | 374,254.54 | 18,975.24 | 1516.00 | 1562.00 |
2008 | 410,386.16 | 20,364.59 | 1627.00 | 1712.80 |
2009 | 448,961.69 | 21,051.75 | 1681.90 | 1873.80 |
2010 | 496,713.88 | 23,044.40 | 1841.10 | 2073.10 |
2011 | 544,082.72 | 25,271.11 | 2019.00 | 2270.80 |
2012 | 586,827.28 | 26,809.41 | 2141.90 | 2449.20 |
2013 | 632,351.20 | 28,578.01 | 2283.20 | 2639.20 |
2014 | 678,498.08 | 30,434.23 | 2431.50 | 2831.80 |
2015 | 725,315.84 | 31,668.37 | 2530.10 | 3027.20 |
2016 | 774,050.39 | 33,722.35 | 2694.20 | 3230.60 |
2017 | 827,121.70 | 36,802.70 | 2940.30 | 3452.10 |
Year | Total | |||||||
---|---|---|---|---|---|---|---|---|
2018 | 3786.25 | −1369.13 | 1958.62 | −2255.84 | −455.99 | 3003.01 | −266.67 | 4400.26 |
2019 | 4174.60 | −1614.12 | 1997.63 | −2490.97 | −418.12 | 2982.95 | −288.43 | 4343.54 |
2020 | 4562.96 | −1859.11 | 2036.46 | −2726.09 | −380.26 | 2962.89 | −310.19 | 4286.65 |
2021 | 4951.31 | −2104.10 | 2075.39 | −2961.22 | −342.39 | 2942.82 | −331.95 | 4229.85 |
2022 | 5339.66 | −2349.09 | 2114.26 | −3196.35 | −304.53 | 2922.76 | −353.72 | 4173.00 |
2023 | 5728.01 | −2594.08 | 2153.16 | −3431.47 | −266.66 | 2902.70 | −375.48 | 4116.17 |
2024 | 6116.36 | −2839.07 | 2192.05 | −3666.60 | −228.80 | 2882.64 | −397.24 | 4059.34 |
2025 | 6504.71 | −3084.06 | 2230.94 | −3901.73 | −190.93 | 2862.58 | −419.00 | 4002.51 |
Total | 41,163.86 | −17,812.77 | 16,758.51 | −24,630.27 | −2587.70 | 23,462.35 | −2742.68 | 33,611.31 |
Year | Predicted Value |
---|---|
2018 | 111,602.2983 |
2019 | 115,945.8432 |
2020 | 120,232.4907 |
2021 | 124,462.3395 |
2022 | 128,635.3375 |
2023 | 132,751.5123 |
2024 | 136,810.8492 |
2025 | 140,813.3560 |
Year | Total | |||||||
---|---|---|---|---|---|---|---|---|
2002 | 925.87 | 213.58 | −939.17 | 260.79 | −610.52 | 2651.21 | 47.16 | 2548.92 |
2003 | 1613.29 | 415.04 | 4568.99 | 2708.67 | −1282.67 | −3116.14 | −738.78 | 4168.39 |
2004 | −6430.78 | 6647.07 | −224.08 | 2255.95 | 1664.58 | 4121.92 | −2936.68 | 5097.99 |
2005 | −1462.36 | 2802.73 | −527.96 | −574.78 | −83.56 | 4513.30 | −755.41 | 3911.97 |
2006 | 1036.10 | 592.89 | 578.91 | −220.23 | −1342.64 | 4271.06 | −194.36 | 4721.73 |
2007 | 221.56 | 1270.35 | 699.23 | −2624.72 | −1261.33 | 5634.70 | −722.64 | 3217.14 |
2008 | 565.95 | −3299.02 | 10.02 | −308.81 | −1347.50 | 8489.67 | −872.06 | 3238.26 |
2009 | −415.01 | 940.13 | 6513.45 | −1394.90 | −3668.96 | −1216.71 | −521.03 | 236.96 |
2010 | −3119.33 | 1034.22 | −156.93 | 721.85 | −734.45 | 9174.77 | −280.21 | 6639.92 |
2011 | −1780.04 | −797.99 | 5253.14 | −678.55 | 96.85 | 4148.00 | −793.56 | 5447.86 |
2012 | −643.05 | −1175.68 | −12,697.03 | 2992.10 | −1350.38 | 20,699.01 | −211.92 | 7613.05 |
2013 | 9362.11 | 174.23 | 20,992.37 | −97.92 | −973.81 | −23,909.88 | 2787.00 | 8334.11 |
2014 | −562.80 | 5510.02 | 1655.23 | −1986.22 | −680.79 | −69.75 | −748.21 | 3117.49 |
2015 | 7760.77 | −1716.96 | −797.01 | 1255.75 | −2633.21 | 1232.31 | −253.75 | 4847.90 |
2016 | 1976.59 | −365.28 | −577.77 | −3784.06 | −208.07 | 5529.40 | −335.96 | 2234.85 |
2017 | 1034.48 | −3149.34 | −693.72 | −3873.47 | 2101.43 | 9739.94 | −206.51 | 4952.81 |
Total | 10,083.34 | 9096.00 | 23,657.69 | −5348.54 | −12,315.00 | 51,892.81 | −6736.93 | 70,329.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, M.; Li, M. Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry. Sustainability 2020, 12, 2596. https://doi.org/10.3390/su12072596
Meng M, Li M. Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry. Sustainability. 2020; 12(7):2596. https://doi.org/10.3390/su12072596
Chicago/Turabian StyleMeng, Ming, and Manyu Li. 2020. "Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry" Sustainability 12, no. 7: 2596. https://doi.org/10.3390/su12072596
APA StyleMeng, M., & Li, M. (2020). Decomposition Analysis and Trend Prediction of CO2 Emissions in China’s Transportation Industry. Sustainability, 12(7), 2596. https://doi.org/10.3390/su12072596