Productivity and Topsoil Quality of Young and Old Permanent Grassland: An On-Farm Comparison
Abstract
:1. Introduction
- young grasslands (5–15 years since grassland renewal) have higher grass productivity than old grasslands (>20 years since grassland renewal) since in young grasslands the most recently developed ryegrass varieties are used and the so-called “years of depression” (a temporary period in which the productivity is lower) have come to an end.
- the soil chemical quality, expressed as SOM, soil organic C and N and potentially mineralizable N (PMN), of young grassland soils, is lower than the soil chemical quality of old grassland soils.
- grass productivity parameters of young and old grassland are positively correlated with SOM and related soil parameters.
2. Materials and Methods
2.1. Experimental Setup
2.2. Grass Productivity
2.3. Soil Sampling and Analysis
2.4. Weather Conditions
2.5. Calculations and Statistical Analysis
- Y = αi + βi * N application + εij
- Y
- DM or N yield;
- αi
- DM or N yield intercept, representing the DM or N yield of field i at 0 kg N ha−1;
- βi
- DM or N yield response to N fertilizer; the slope of the linear correlation between DM or N yield and N application;
- εij
- random field effect, εij ~ N(0, σ2v).
3. Results
3.1. Field Properties
3.2. Botanical Composition
3.3. Grass Productivity
3.4. Soil Organic Matter and Other Soil Chemical Parameters
3.5. Relationships between Grass Productivity Parameters and Soil Parameters
4. Discussion
4.1. Grass Productivity
4.2. Soil Parameters
4.3. Relationships between Grass Productivity Parameters and Soil Parameters
4.4. Practical Implications
5. Conclusions
- The grassland N yield without N fertilization (NYN0) was significantly higher for old grassland compared to young grassland, as a result of higher soil organic matter, C-total and N-total contents in old grassland soils.
- There was no significant difference between old and young grassland in grassland dry matter yield without N fertilization (DMYN0), grassland response (DMY-res), and N yield response (NY-res) to fertilizer N application.
- A significant part of the variation in DMYN0 and DMY-res and NYN0 was explained by soil N-total content.
- On clay soils where the botanical composition of grasslands contain > 70% of desirable grasses, the presumed yield benefit of grassland renewal (sowing of the most recently developed grass varieties) is offset by a loss of soil quality (SOM and N-total). Accordingly, the current practice of grassland renewal within a relatively short time-span (every ten years) without considering the botanical composition, is counter-productive and not sustainable.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oenema, O.; De Klein, C.; Alfaro, M. Intensification of grassland and forage use: Driving forces and constraints. Crop Pasture Sci. 2014, 65, 524–537. [Google Scholar] [CrossRef]
- Osoro, K. EIP-AGRI Focus Group Profitability of Permanent Grassland: How to Manage Permanent Grassland in a Way that Combines Profitability, Carbon Sequestration and Biodiversity? Starting Paper; EIP-AGRI: Brussels, Belgium, 2014; p. 29. [Google Scholar]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, J.L.; Peeters, A. The role of grassland based production system in the protein security. In Proceedings of the Grassland Science in Europe, Trondheim, Norway, 4–8 September 2016; Volume 21, p. 15. [Google Scholar]
- Van den Pol-van Dasselaar, A. Grazing for Carbon, Starting Paper, EIP-AGRI Focus Group Grazing for Carbon; EIP-AGRI: Brussels, Belgium, 2017; p. 16. [Google Scholar]
- CBS Data Statline. Available online: http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=71904NED&D1=88-90&D2=144-165&VW=T (accessed on 18 August 2017).
- Korevaar, H.; Sacco, D.; Ravetto Enri, S.; Lombardi, G.; ten Berge, H.F.M.; Bufe, C.; Whittingham, M.J.; Smith, P.; Vanwalleghem, T.; Lellei-Kovács, E.; et al. Characterising permanent grassland-based farming systems in Europe. In Proceedings of the Improving Sown Grasslands through Breeding and Management, Zurich, Switzerland, 24–27 June 2019; Wageningen Academic Publishers: Zurich, Switzerland, 2019; Volume 24, pp. 164–166. [Google Scholar]
- Vellinga, T.V.; Van den Pol-van Dasselaar, A.; Kuikman, P.J. The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutr. Cycl. Agroecosyst. 2004, 70, 33–45. [Google Scholar] [CrossRef]
- Russchen, H.J. Pasture Renovation: Reseeding and Crop Rotation in Practice; Plant Research International Wageningen UR: Dutch, The Netherlands, 2005; p. 50. (In Dutch) [Google Scholar]
- Velthof, G.L.; Hoving, I.E.; Dolfing, J.; Smit, A.; Kuikman, P.J.; Oenema, O. Method and timing of grassland renovation affects herbage yield, nitrate leaching, and nitrous oxide emission in intensively managed grasslands. Nutr. Cycl. Agroecosyst. 2009, 86, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Smit, A.; Velthof, G.L. Comparison of indices for the prediction of nitrogen mineralization after destruction of managed grassland. Plant Soil 2010, 331, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Schils, R.L.M.; Aarts, H.F.M.; Bussink, D.W.; Conijn, J.G.; Corré, W.J.; van Dam, A.M.; Hoving, I.E. Grassland renovation in the Netherlands; agronomic, environmental and economic issues. In Grassland Resowing and Grass-Arable Crops Rotations; Conijn, J.G., Velthof, G.L., Taube, F., Eds.; PRI (Plant Research International 47): Dutch, The Netherlands, 2007; pp. 9–24. [Google Scholar]
- Hopkins, A.; Murray, P.J.; Bowling, P.J.; Rook, A.J.; Johnson, J. Productivity and nitrogen uptake of ageing and newly sown swards of perennial ryegrass (Lolium perenne L.) at different sites and with different nitrogen fertilizer treatments. Eur. J. Agron. 1995, 4, 65–75. [Google Scholar] [CrossRef]
- Hoving, I.E. The Reseeding Indicator as a Tool for Renewing Grassland; Wageningen UR: Dutch, The Netherlands, 2006; p. 23. (In Dutch) [Google Scholar]
- Reheul, D.; De Vliegher, A.; Bommelé, L.; Carlier, L. The comparison between temporary and permanent grassland. In Proceedings of the Permanent and Temporary Grassland Plant, Environment and Economy, Ghent, Belgium, 3–5 September 2007; Volume 12, pp. 1–13. [Google Scholar]
- Taube, F.; Conijn, J.G. Grassland renovation in Northwest Europe: Current practices and main agronomic and environmental questions. In Proceedings of the Land Use Systems in Grassland Dominated Regions, Luzern, Switzerland, 21–24 June 2004; Volume 9, pp. 520–522. [Google Scholar]
- Conijn, J.G.; Velthof, G.L.; Taube, F. (Eds.) Grassland resowing and grass-arable crop rotations. In International Workshop on Agricultural and Environmental Issues; Plant Research International Wageningen UR: Dutch, The Netherlands, 2002; p. 140. [Google Scholar]
- Chaves, B.; De Vliegher, A.; Van Waes, J.; Carlier, L.; Marynissen, B. Change in agronomic performance of Lolium perenne and Lolium multiflorum varieties in the past 40 years based on data from Belgian VCU trials. Plant Breed. 2009, 128, 680–690. [Google Scholar] [CrossRef]
- Laidig, F.; Piepho, H.-P.; Drobek, T.; Meyer, U. Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor. Appl. Genet. 2014, 127, 2599–2617. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Sampoux, J.-P.; Baudouin, P.; Bayle, B.; Béguier, V.; Bourdon, P.; Chosson, J.-F.; Deneufbourg, F.; Galbrun, C.; Ghesquière, M.; Noël, D.; et al. Breeding perennial grasses for forage usage: An experimental assessment of trait changes in diploid perennial ryegrass (Lolium perenne L.) cultivars released in the last four decades. Field Crops Res. 2011, 123, 117–129. [Google Scholar] [CrossRef]
- Shalloo, L.; Creighton, P.; O’Donovan, M. The economics of reseeding on a dairy farm. Ir. J. Agric. Food Res. 2011, 50, 113–122. [Google Scholar]
- Wilkins, P.W.; Humphreys, M.O. Progress in breeding perennial forage grasses for temperate agriculture. J. Agric. Sci. 2003, 140, 129–150. [Google Scholar] [CrossRef]
- Hoogerkamp, M. Ley, Periodically Reseeded Grassland or Permanent Grassland; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1974; p. 35. [Google Scholar]
- Hopkins, A.; Gilbey, J.; Dibb, C.; Bowling, P.J.; Murray, P.J. Response of permanent and reseeded grassland to fertilizer nitrogen. 1. Herbage production and herbage quality. Grass Forage Sci. 1990, 45, 43–55. [Google Scholar] [CrossRef]
- Nevens, F.; Reheul, D. Permanent grassland and 3-year leys alternating with 3 years of arable land: 31 years of comparison. Eur. J. Agron. 2003, 19, 77–90. [Google Scholar] [CrossRef]
- De Vliegher, A.; Carlier, L. The effect of the age of grassland on yield, botanical composition and nitrate content in the soil under grazing conditions. In Proceedings of the Permanent and Temporary Grassland: Plant, Environment and Economy, Ghent, Belgium, 3–5 September 2007; Volume 12, pp. 51–54. [Google Scholar]
- Hoogerkamp, M. Accumulation of Organic Matter under Grassland and Its Effects on Grassland an on Arable Crops, Agricultural Research Reports; PUDOC: Wageningen, The Netherlands, 1973; ISBN 978-90-220-0481-4. [Google Scholar]
- Reijneveld, A.; Van Wensem, J.; Oenema, O. Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004. Geoderma 2009, 152, 231–238. [Google Scholar] [CrossRef]
- Verloop, J.; Hilhorst, G.J.; Pronk, A.A.; Šebek, L.B.; van Keulen, H.; Janssen, B.H.; Van Ittersum, M.K. Organic matter dynamics in an intensive dairy production system on a Dutch Spodosol. Geoderma 2015, 237–238, 159–167. [Google Scholar] [CrossRef]
- Hoogerkamp, M. Changes in Productivity of Grassland with Ageing. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1984. [Google Scholar]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals: Grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Peeters, A.; Beaufoy, G.; Canals, R.M.; De Vliegher, A.; Huyghe, C.; Isselstein, J.; Jones, G.; Kessler, W.; Kirilov, A.; Mosquera-Losada, M.R.; et al. Grassland term definitions and classifications adapted to the diversity of European grassland-based systems. In Proceedings of the EGF at 50: The Future of European Grasslands, Aberystwyth, Wales, 7–11 September 2014; Volume 19, pp. 743–750. [Google Scholar]
- Hassink, J. Prediction of the non-fertilizer N supply of mineral grassland soils. Plant Soil 1995, 176, 71–79. [Google Scholar] [CrossRef]
- Müller, C.; Stevens, R.J.; Laughlin, R.J. A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol. Biochem. 2004, 36, 619–632. [Google Scholar] [CrossRef]
- Nevens, F.; Reheul, D. The nitrogen- and non-nitrogen-contribution effect of ploughed grass leys on the following arable forage crops: Determination and optimum use. Eur. J. Agron. 2002, 16, 57–74. [Google Scholar] [CrossRef]
- Reijs, J.W.; Sonneveld, M.P.W.; Sørensen, P.; Schils, R.L.M.; Groot, J.C.J.; Lantinga, E.A. Effects of different diets on utilization of nitrogen from cattle slurry applied to grassland on a sandy soil in the Netherlands. Agric. Ecosyst. Environ. 2007, 118, 65–79. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Bouma, J. Effects of combinations of land use history and nitrogen application on nitrate concentration in the groundwater. NJAS Wagening. J. Life Sci. 2003, 51, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Westhoff, V.; Van der Maarel, E. The Braun-Blanquet Approach; Springer: Berlin/Heidelberg, Germany, 1978; pp. 287–399. [Google Scholar]
- Van Eekeren, N.; De Boer, H.C.; Hanegraaf, M.; Bokhorst, J.; van Nierop, D.; Bloem, J.; Schouten, T.; de Goede, R.; Brussaard, L. Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol. Biochem. 2010, 42, 1491–1504. [Google Scholar] [CrossRef]
- Deru, J.G.C.; Bloem, J.; de Goede, R.; Hoekstra, N.; Keidel, H.; Kloen, H.; Nierop, A.; Rutgers, M.; Schouten, T.; van den Akker, J.; et al. Predicting soil N supply and yield parameters in peat grasslands. Appl. Soil Ecol. 2019, 134, 77–84. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Michałowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- Bronswijk, J.J.B.; Groot, M.S.M.; Fest, P.M.J.; Van Leeuwen, T.C. National Soil Quality Monitoring Network, Results of the First Sampling Round 1993–1997; RIVM: Bilthoven, The Netherlands, 2003; p. 149. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Canali, S.; Benedetti, A. Soil nitrogen mineralization. In Microbiological Methods for Assessing Soil Quality; Bloem, J., Hopkins, D.W., Benedetti, A., Eds.; CABI: Wallingford, UK, 2006; pp. 23–49. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Part 2; Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- KNMI. Annual Review of Precipitation and Evaporation in the Netherlands; The Royal Netherlands Meteorological Institute (KNMI): Bilthoven, The Netherlands, 2015; p. 14. (In Dutch) [Google Scholar]
- KNMI. Monthly and Yearly Mean Temperatures. Available online: http://cdn.knmi.nl/knmi/map/page/klimatologie/gegevens/maandgegevens/mndgeg_270_tg.txt (accessed on 1 December 2018).
- Baars, E.W.; Nierop, A.F.M.; Savelkoul, H.F.J. Development of systems biology-oriented biomarkers by permuted stepwise regression for the monitoring of seasonal allergic rhinitis treatment effects. J. Immunol. Methods 2012, 378, 62–71. [Google Scholar] [CrossRef]
- Creighton, P.; Kennedy, E.; Hennessy, D.; O’Donovan, M. Impacts of Sward Renewal Method with Perennial Ryegrass (Lolium perenne) on Dry Matter Yield, Tiller Density and Nitrate Leaching. Am. J. Plant Sci. 2016, 7, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Balogh, J.; Pintér, K.; Fóti, S.; Cserhalmi, D.; Papp, M.; Nagy, Z. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol. Biochem. 2011, 43, 1006–1013. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar]
- Van Eekeren, N.; Bommelé, L.; Bloem, J.; Schouten, T.; Rutgers, M.; de Goede, R.G.M.; Reheul, D.; Brussaard, L. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol. 2008, 40, 432–446. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.L.; Yeates, G.W.; Ross, D.J.; Mackay, A.D.; Budding, P.J. Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl. Soil Ecol. 2005, 28, 1–13. [Google Scholar] [CrossRef]
- Buchen, C.; Well, R.; Helfrich, M.; Fuß, R.; Kayser, M.; Gensior, A.; Benke, M.; Flessa, H. Soil mineral N dynamics and N2O emissions following grassland renewal. Agric. Ecosyst. Environ. 2017, 246, 325–342. [Google Scholar] [CrossRef]
- Humphreys, J.; O’Connell, K.; Casey, I.A. Nitrogen flows and balances in four grassland-based systems of dairy production on a clay-loam soil in a moist temperate climate. Grass Forage Sci. 2008, 63, 467–480. [Google Scholar] [CrossRef]
- Klaus, V.H.; Kleinebecker, T.; Busch, V.; Fischer, M.; Hölzel, N.; Nowak, S.; Prati, D.; Schäfer, D.; Schöning, I.; Schrumpf, M.; et al. Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Glob. Chang. Biol. 2018, 24, 2828–2840. [Google Scholar] [CrossRef] [Green Version]
- Necpálová, M.; Casey, I.; Humphreys, J. Effect of ploughing and reseeding of permanent grassland on soil N, N leaching and nitrous oxide emissions from a clay-loam soil. Nutr. Cycl. Agroecosyst. 2013, 95, 305–317. [Google Scholar] [CrossRef]
- Necpálová, M.; Li, D.; Lanigan, G.; Casey, I.A.; Burchill, W.; Humphreys, J. Changes in soil organic carbon in a clay loam soil following ploughing and reseeding of permanent grassland under temperate moist climatic conditions. Grass Forage Sci. 2014, 69, 611–624. [Google Scholar] [CrossRef]
- Reinsch, T.; Loges, R.; Kluß, C.; Taube, F. Renovation and conversion of permanent grass-clover swards to pasture or crops: Effects on annual N2O emissions in the year after ploughing. Soil Tillage Res. 2018, 175, 119–129. [Google Scholar] [CrossRef]
- Reinsch, T.; Loges, R.; Kluß, C.; Taube, F. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agric. Ecosyst. Environ. 2018, 265, 374–383. [Google Scholar] [CrossRef]
- Hoffmann, M.P.; Isselstein, J.; Rötter, R.P.; Kayser, M. Nitrogen management in crop rotations after the break-up of grassland: Insights from modelling. Agric. Ecosyst. Environ. 2018, 259, 28–44. [Google Scholar] [CrossRef]
- Kayser, M.; Müller, J.; Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 2018, 7, e00146. [Google Scholar] [CrossRef]
- De Boer, H.C.; Deru, J.G.C.; Van Eekeren, N. Sward lifting in compacted grassland: Contrasting effects on two different soils. Soil Tillage Res. 2020, in press. [Google Scholar] [CrossRef]
- De Boer, H.C.; Deru, J.G.C.; Van Eekeren, N. Sward lifting in compacted grassland: Effects on soil structure, grass rooting and productivity. Soil Tillage Res. 2018, 184, 317–325. [Google Scholar] [CrossRef]
Young Grassland | Old Grassland | |||||
---|---|---|---|---|---|---|
Parameter | Unit | Mean | s.d. | Mean | s.d | P-Value |
Grass age | years without cultivation | 9 | 4 | 25 | 4 | <0.001 |
Botanical composition | ||||||
Desirable grasses | % | 87.1 | 9.6 | 83.2 | 11.2 | 0.439 |
Other grasses | % | 11.6 | 9.6 | 13.8 | 11.3 | 0.634 |
Legumes | % | 0.6 | 0.7 | 0.4 | 0.7 | 0.572 |
Herbs | % | 0.8 | 0.8 | 2.6 | 3.8 | 0.111 |
Soil texture | ||||||
Clay | (% particles < 2 μm) | 31 | 8 | 29 | 7 | 0.301 |
Silt | (% particles 2–50 μm) | 47 | 4 | 46 | 5 | 0.074 |
Sand | (% particles > 50 μm) | 22 | 8 | 25 | 10 | 0.530 |
Soil organic matter (SOM) | % | 10.7 | 3.3 | 13.3 | 2.2 | 0.031 |
C-total | g C. kg dry soil−1 | 45.2 | 18 | 61.0 | 12 | 0.002 |
C percentage of SOM | % | 41.4 | 4.0 | 45.6 | 2.1 | 0.002 |
Hot-water extractable carbon (HWC) | µg C. g dry soil−1 | 2412 | 1042 | 3356 | 593 | 0.002 |
N-total | g N. kg dry soil−1 | 4.82 | 1.7 | 6.28 | 1.2 | <0.001 |
C:N-ratio | 9.28 | 0.4 | 9.70 | 0.3 | 0.009 | |
Potentially mineralizable N (PMN) | mg N. kg dry soil−1 | 175 | 53 | 232 | 32 | 0.001 |
Ca-total | kg Ca. ha−1 | 56.3 | 39 | 64.8 | 46 | 0.545 |
P-Al | mg P2O5.100 g soil−1 | 26.3 | 9 | 38.5 | 17 | 0.074 |
K in solution | 36.0 | 15 | 33.5 | 8 | 0.552 | |
pH-KCL | 5.67 | 0.6 | 5.50 | 0.7 | 0.410 | |
Soil water content | vol % | 28.6 | 3.2 | 31.7 | 2.8 | 0.007 |
Grass Productivity Parameter | All | Young | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Model Parameter | 2nd Model Parameter | cv R2 | P-Value | 1st Model Parameter | 2nd Model Parameter | cv R2 | P-Value | |||||
DMYN0 | N-total | + | 0.36 | 0.040 | none | |||||||
N-total | + | C:N-ratio | ‒ | 0.28 | 0.020 | |||||||
N-total | + | C-total | ‒ | 0.15 | 0.030 | |||||||
N-total | + | C perc SOM | + | 0.31 | 0.030 | |||||||
DMY-res | N-total | ‒ | 0.55 | 0.005 | N-total | + | 0.63 | 0.02 | ||||
N-total | ‒ | C-total | + | 0.47 | 0.020 | N-total | ‒ | PMN | + | 0.69 | 0.02 | |
N-total | ‒ | Grass age | + | 0.59 | 0.020 | N-total | ‒ | C-total | + | 0.60 | 0.05 | |
NYN0 | N-total | + | 0.56 | 0.004 | N-total | + | 0.52 | 0.04 | ||||
N-total | + | C-total | ‒ | 0.57 | 0.004 | N-total | + | C-total | ‒ | 0.83 | 0.01 | |
N-total | + | C:N-ratio | ‒ | 0.61 | 0.003 | N-total | + | C:N-ratio | ‒ | 0.63 | 0.02 | |
N-total | + | Mgshare | + | 0.56 | 0.010 | |||||||
NY-res | none | none |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iepema, G.; Deru, J.G.C.; Bloem, J.; Hoekstra, N.; de Goede, R.; Brussaard, L.; van Eekeren, N. Productivity and Topsoil Quality of Young and Old Permanent Grassland: An On-Farm Comparison. Sustainability 2020, 12, 2600. https://doi.org/10.3390/su12072600
Iepema G, Deru JGC, Bloem J, Hoekstra N, de Goede R, Brussaard L, van Eekeren N. Productivity and Topsoil Quality of Young and Old Permanent Grassland: An On-Farm Comparison. Sustainability. 2020; 12(7):2600. https://doi.org/10.3390/su12072600
Chicago/Turabian StyleIepema, Goaitske, Joachim G. C. Deru, Jaap Bloem, Nyncke Hoekstra, Ron de Goede, Lijbert Brussaard, and Nick van Eekeren. 2020. "Productivity and Topsoil Quality of Young and Old Permanent Grassland: An On-Farm Comparison" Sustainability 12, no. 7: 2600. https://doi.org/10.3390/su12072600
APA StyleIepema, G., Deru, J. G. C., Bloem, J., Hoekstra, N., de Goede, R., Brussaard, L., & van Eekeren, N. (2020). Productivity and Topsoil Quality of Young and Old Permanent Grassland: An On-Farm Comparison. Sustainability, 12(7), 2600. https://doi.org/10.3390/su12072600