Physico-Chemical Aspects and Complete Bacterial Community Composition Analysis of Wasp Nests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physico-Chemical Analyses
2.3. XRD Analysis
2.4. DNA Extraction, Amplicon Sequencing of 16S rRNA Gene (V3–V4) and Data Analysis
3. Results
3.1. Physico-Chemical Properties and Unconfined Compressive Strength (UCS) of the Wasp Nests
3.2. XRD Analysis of the Wasp Nests
3.3. Amplicon Sequencing of 16S rRNA Gene (V3–V4)
3.4. Bacterial Diversity Associated with the Wasp Nests
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deke, A.L.; Adugna, W.T.; Fite, A.T. Soil physic-chemical properties in termite mounds and adjacent control soil in Miyo and Yabello districts of Borana zone, southern Ethiopia. Am. J. Agric. For. 2016, 4, 69–74. [Google Scholar]
- Li, M.; Fu, Q.-L.; Zhang, Q.; Achal, V.; Kawasaki, S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 2015, 5, 16128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duponnois, R.; Kisa, M.; Assigbetse, K.; Prin, Y.; Thioulouse, J.; Issartel, M.; Moulin, P.; Lepage, M. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci. Total Environ. 2006, 370, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Sujada, N.; Sungthong, R.; Lumyong, S. Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Microbes Environ. 2014, 29, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishanti, N.P.R.A.; Zulfina, D.; Wikantyoso, B.; Zulfitri, A.; Yusuf, S. Antimicrobial production by an actinomycetes isolated from the termite nest. J. Trop. Life Sci. 2018, 8, 279–288. [Google Scholar]
- Nauer, P.A.; Hutley, L.B.; Arndt, S.K. Termite mounds mitigate half of termite methane emissions. Proc. Natl. Acad. Sci. USA 2018, 115, 13306–13311. [Google Scholar] [CrossRef] [Green Version]
- Enagbonma, B.J.; Babalola, O.O. Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Ann. Microbiol. 2019, 69, 211–219. [Google Scholar] [CrossRef]
- Fall, S.; Nazaret, S.; Chotte, J.L.; Brauman, A. Bacterial density and community structure associated with aggregate size fractions of soil feeding termite mounds. Microb. Ecol. 2004, 28, 191–199. [Google Scholar] [CrossRef]
- Watson, J.P. The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. J. Soil Sci. 1977, 28, 664–672. [Google Scholar] [CrossRef]
- Enagbonma, B.J.; Babalola, O.O. Environmental sustainability: A review of termite mound soil material and its bacteria. Sustainability 2019, 11, 3847. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Achal, V. Biostimulation of calcite precipitation process by bacterial community in improving cement stabilized rammed earth as sustainable material. Appl. Microbiol. Biotechnol. 2019, 103, 7719–7727. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjula, A.; Pushpanathan, M.; Sathyavathi, S.; Gunasekaran, P.; Rajendhran, J. Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr. Microbiol. 2016, 72, 267–275. [Google Scholar] [CrossRef] [PubMed]
- ASTM C618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Omofunmi, O.E.; Oladipo, O.I. Assessment of termite mound additive on soil physical characteristics. Agric. Eng. Int. CIGR J. 2018, 20, 40–46. [Google Scholar]
- Ganguli, A.K.; Kumar, S.; Baruah, A.; Vaidya, S. Nanocrystalline silica from termite mounds. Curr. Sci. 2014, 106, 83–88. [Google Scholar]
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Liu, X.; Monger, H.C.; Whitford, W.G. Calcium carbonate in termite galleries—Biomineralization or upward transport? Biogeochemistry 2007, 82, 241–250. [Google Scholar] [CrossRef]
- Makonde, H.M.; Mwirichia, R.; Osiemo, Z.; Boga, H.I.; Klenk, H.P. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 2015, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt-Wagner, D.; Friedrich, M.; Wagner, B.; Brune, A. Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soilfeeding termites (Cubitermes spp). Appl. Environ. Microbiol. 2003, 69, 6018–6024. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Hongoh, Y.; Noda, S.; Yoshida, Y.; Usami, R.; Kudo, T.; Ohkuma, M. Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci. Biotechnol. Biochem. 2006, 70, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Chouvenc, J.; Yaosu, N.; Robert, A. Inhibition of the fungal pathogen, Metarhizium anisopliae in the alimentary tracts, of five termite species. Fla. Entomol. 2010, 93, 467–469. [Google Scholar] [CrossRef]
- Garba, M.; Cornelis, W.M.; Steppe, K. Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicum L.) in semi-arid Niger. Plant Soil 2011, 338, 451–466. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Jiang, Q.; Bai, Y.; Shen, G.; Li, S.; Ding, W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 2016, 6, 36773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, D.W. Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes hesperus. J. Gen. Microbiol. 1976, 95, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehr, J.P.; Jenkins, B.D.; Short, S.M.; Steward, G.F. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environ. Microbiol. 2003, 5, 539–554. [Google Scholar] [CrossRef]
- Moran, N. Symbiosis. Curr. Biol. 2006, 16, R866–R871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seipke, R.F.; Kaltenpoth, M.; Hutchings, M.I. Streptomyces as symbionts: A emerging and widespread theme? FEMS Microbiol. Rev. 2012, 36, 862–876. [Google Scholar] [CrossRef] [Green Version]
- Sen, R.; Ishak, H.D.; Estrada, E.; Dowd, S.E.; Hong, E.; Mueller, U.G. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc. Natl. Acad. Sci. USA 2009, 106, 17805–17810. [Google Scholar] [CrossRef] [Green Version]
- Ishak, H.D.; Plowes, R.; Sen, R.; Kellner, K.; Meyer, E.; Estrada, D.A.; Dowd, S.E.; Mueller, U.G. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb. Ecol. 2011, 61, 821–831. [Google Scholar] [CrossRef]
- Sujarit, K.; Sujada, N.; Kudo, T.; Ohkuma, M.; Pathom-Aree, W.; Lumyong, S. Pseudonocardia thailandensis sp. nov., an actinomycete isolated from a subterranean termite nest. Int. J. Syst. Evol. Microbiol. 2017, 67, 2773–2778. [Google Scholar] [CrossRef]
- Cappelletti, M.; Ghezzi, D.; Zannoni, D.; Capaccioni, B.; Fedi, S. Diversity of methane-oxidizing bacteria in soils from “Hot Lands of Medolla” (Italy) featured by anomalous high-temperatures and biogenic CO2 emission. Microbes Environ. 2016, 31, 369–377. [Google Scholar] [CrossRef] [Green Version]
Parameters | WH.1 (%) | WH.2 (%) |
---|---|---|
pH | 6.35 | 6.56 |
Moisture | 17.2 | 16.6 |
Silicon dioxide (SiO2) | 61.28 | 61.64 |
Aluminum oxide (Al2O3) | 12.73 | 13.36 |
Ferric oxide (Fe2O3) | 5.57 | 5.28 |
Calcium oxide (CaO) | 1.28 | 1.65 |
Magnesium oxide (MgO) | 0.52 | 0.47 |
Titanium oxide (TiO2) | 1.04 | 0.94 |
Loss on ignition (LOI) | 6.25 | 5.87 |
Sample | Sobs | Chao1 | Ace | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
WH.1 | 1740 | 1783.413 | 1814.977 | 5.976614 | 0.007203 | 0.996318 |
WH.2 | 1900 | 1911.982 | 1928.276 | 6.149132 | 0.006322 | 0.99832 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Achal, V. Physico-Chemical Aspects and Complete Bacterial Community Composition Analysis of Wasp Nests. Sustainability 2020, 12, 2652. https://doi.org/10.3390/su12072652
Fang C, Achal V. Physico-Chemical Aspects and Complete Bacterial Community Composition Analysis of Wasp Nests. Sustainability. 2020; 12(7):2652. https://doi.org/10.3390/su12072652
Chicago/Turabian StyleFang, Chaolin, and Varenyam Achal. 2020. "Physico-Chemical Aspects and Complete Bacterial Community Composition Analysis of Wasp Nests" Sustainability 12, no. 7: 2652. https://doi.org/10.3390/su12072652
APA StyleFang, C., & Achal, V. (2020). Physico-Chemical Aspects and Complete Bacterial Community Composition Analysis of Wasp Nests. Sustainability, 12(7), 2652. https://doi.org/10.3390/su12072652