Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia
Abstract
:1. Introduction
2. Material and Methods
2.1. Definition of Sheep Farming Systems
2.2. Footprint Calculation at Farm Level
2.3. Transport
2.4. Industry
2.5. Footprint Calculation at Regional Level
3. Results
3.1. Carbon Footprint (CF) at Farm Level
3.2. Transport, Meat, and Wool Processing
3.3. Carbon Footprints (CF) at Regional Level
4. Discussion
4.1. Comparison of the Patagonian Data with Data from Other Regions
4.2. Industrial Processing
4.3. Carbon Footprints (CF) at Regional Level
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Ecosystem Classification | N | Carbon Footprint | Modeled | Mean Error | Absolute Error |
---|---|---|---|---|---|
Central Plateau | 5 | 25.87 | 30.48 | −4.61 | 4.61 |
Central Plateau* | 4 | 38.45 | 31.24 | 7.21 | 7.21 |
Humid Magellanic Steppe | 3 | 15.42 | 12.22 | 3.20 | 3.20 |
Humid Magellanic Steppe* | 2 | 23.55 | 18.76 | 4.79 | 4.79 |
Dry Magellanic Steppe | 4 | 16.02 | 22.27 | −6.25 | 6.25 |
Dry Magellanic Steppe* | 5 | 26.00 | 22.31 | 3.69 | 3.69 |
Mata Negra Thicket | 8 | 22.71 | 27.35 | −4.64 | 4.84 |
Mata Negra Thicket* | 11 | 33.31 | 28.23 | 5.08 | 5.08 |
Andean Region | 10 | 12.15 | 15.97 | −3.82 | 3.98 |
Andean Region* | 11 | 13.92 | 13.64 | 0.28 | 2.13 |
Temperature seasonality (°C) | |||||
<3.80 | 20 | 14.96 | 14.11 | 0.85 | 2.47 |
3.80–4.20 | 21 | 20.16 | 21.65 | −1.48 | 4.84 |
>4.20 | 22 | 30.48 | 29.75 | 0.74 | 5.51 |
NDVI (dimensionless) | |||||
<0.23 | 20 | 30.20 | 29.80 | 0.40 | 5.35 |
0.23–0.50 | 21 | 23.55 | 23.38 | 0.17 | 5.17 |
>0.50 | 22 | 13.40 | 13.83 | −0.43 | 2.58 |
Total | 63 | 22.12 | 22.08 | 0.03 | 4.32 |
Ecosystem Classification | N | Carbon footprint | Modeled | Mean Error | Absolute Error |
---|---|---|---|---|---|
Central Plateau | 5 | 15.13 | 14.50 | 0.63 | 0.68 |
Central Plateau* | 4 | 16.92 | 14.89 | 2.03 | 2.03 |
Humid Magellanic Steppe | 3 | 11.46 | 9.13 | 2.33 | 2.33 |
Humid Magellanic Steppe* | 2 | 12.37 | 11.71 | 0.66 | 0.79 |
Dry Magellanic Steppe | 4 | 12.43 | 13.02 | −0.59 | 0.66 |
Dry Magellanic Steppe* | 5 | 13.74 | 12.91 | 0.83 | 0.84 |
Mata Negra Thicket | 8 | 13.29 | 14.24 | −0.95 | 1.32 |
Mata Negra Thicket* | 11 | 14.66 | 14.39 | 0.27 | 0.39 |
Andean Region | 10 | 7.83 | 9.49 | −1.66 | 1.66 |
Andean Region* | 11 | 8.82 | 8.83 | −0.01 | 0.74 |
Isothermality (%) | |||||
<47 | 16 | 12.08 | 12.08 | 0.00 | 1.53 |
47–48 | 34 | 12.16 | 12.30 | −0.15 | 0.89 |
>48 | 13 | 12.09 | 11.70 | 0.39 | 0.91 |
Temperature seasonality (°C) | |||||
<3.80 | 20 | 9.73 | 9.39 | 0.34 | 0.92 |
3.80–4.20 | 21 | 11.55 | 12.07 | -0.52 | 1.34 |
>4.20 | 22 | 14.85 | 14.66 | 0.19 | 0.90 |
NDVI (dimensionless) | |||||
<0.23 | 20 | 14.86 | 14.69 | 0.17 | 1.00 |
0.23–0.50 | 21 | 13.02 | 12.99 | 0.03 | 0.97 |
>0.50 | 22 | 8.78 | 8.96 | -0.18 | 1.18 |
Total | 63 | 12.12 | 12.12 | 0.00 | 1.06 |
References
- Peri, P.L.; Lencinas, M.V.; Martinez Pastur, G.; Wardell-Johnson, G.W.; Lasagno, R. Diversity patterns in the steppe of Argentinean Southern Patagonia: Environmental drivers and impact of grazing. In Steppe Ecosystems: Biological Diversity, Management and Restoration; Morales Prieto, M.B., Traba Díaz, J., Eds.; NOVA Science Publishers, Inc.: New York, NY, USA, 2013; pp. 73–95. [Google Scholar]
- Jobbágy, E.G.; Sala, O.E. Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol. Appl. 2000, 10, 541–549. [Google Scholar] [CrossRef]
- Ormaechea, S.; Escribano, C.; Pighin, D.; Peri, P.L. Suplementación proteica posinvernal en sistemas bovinos extensivos de Tierra del Fuego. Rev. RIA 2019, 45, 344–353. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; The Livestock, Environment and Development Initiative (LEAD); FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 10 December 2019).
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeochem. Cycles 2002, 16, 1143. [Google Scholar] [CrossRef] [Green Version]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 2018, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Peri, P.L. Carbon Storage in Cold Temperate Ecosystems in Southern Patagonia, Argentina. In Biomass and Remote Sensing of Biomass; Atazadeh, I., Ed.; InTech Publisher: Rijeka, Croacia, 2011; pp. 213–226. [Google Scholar]
- Biswas, W.K.; Graham, K.; Kelly, K.; John, M.B. Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia—A life cycle assessment. J. Clean. Prod. 2010, 18, 1386–1392. [Google Scholar] [CrossRef]
- O’Brien, D.; Bohan, A.; McHugh, N.; Shalloo, L. A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming. Agric. Syst. 2016, 148, 95–104. [Google Scholar] [CrossRef]
- Edwards- Jones, G.; Plassmann, K.; Harris, I.M. Carbon footprinting of lamb and beef production systems: insights from an empirical analysis of farms in Wales, UK. J. Agric. Sci. 2009, 147, 707–719. [Google Scholar] [CrossRef]
- Plassmann, K.; Norton, A.; Attarzadeh, N.; Jensen, M.P.; Brenton, P.; Edwards-Jones, G. Methodological complexities of product carbon footprinting: A sensitivity analysis of key variables in a developing country context. Environ. Sci. Policy 2010, 13, 393–404. [Google Scholar] [CrossRef]
- Brewer, T. Border Measures to Address Climate Change-Related Competitiveness Concerns: Approaches in the EU and US. In International Trade, Climate Change and Global Competitiveness; International Centre for Trade and Sustainable Development (ICTSD): Geneva, Switzerland, 2007. [Google Scholar]
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop: Release 10; Environmental Systems Research Institute Inc: Redlands, CA, USA, 2011. [Google Scholar]
- Borrelli, P. Producción animal sobre pastizales naturales. In Ganadería Sustentable en la Patagonia Austral; Borrelli, P., Oliva, G., Eds.; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2001; pp. 129–160. [Google Scholar]
- Carbon Trust. Carbon Footprint Measurement Methodology; Version 1.3; The Carbon Trust: London, UK, 2007. [Google Scholar]
- Taylor, R.; Jones, A.; Edwards-Jones, G. Measuring Holistic Carbon Footprints for Lamb and Beef Farms in the Cambrian Mountains Initiative; CCW Policy Research Report No. 10/8; Countryside Council for Wales: Wales, UK, 2010. [Google Scholar]
- IPCC. Prepared by the National Greenhouse Gas Inventories Programme. In Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kamiyamaguchi, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 10 October 2019).
- LEAP. Greenhouse Gas Emissions and Fossil Energy Demand from Small Ruminant Supply Chains: Guidelines for Quantification; Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2014. [Google Scholar]
- Peri, P.L.; Bahamonde, H.; Christiansen, R. Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions. J. Arid Environ. 2015, 119, 1–8. [Google Scholar] [CrossRef]
- Peri, P.L.; Ladd, B.; Lasagno, R.G.; Martínez Pastur, G. The effects of land management (grazing intensity) vs. the effects of topography, soil properties, vegetation type, and climate on soil carbon concentration in Southern Patagonia. J. Arid Environ. 2016, 134, 73–78. [Google Scholar] [CrossRef]
- Peri, P.L.; Lencinas, M.V.; Bousson, J.; Lasagno, R.; Soler, R.; Bahamonde, H.; Martínez Pastur, G. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. J. Nat. Conserv. 2016, 34, 51–64. [Google Scholar] [CrossRef]
- Peri, P.L.; Banegas, N.; Gasparri, I.; Carranza, C.; Rossner, B.; Martínez Pastur, G.; Cavallero, L.; López, D.R.; Loto, D.; Fernández, P.; et al. Carbon Sequestration in Temperate Silvopastoral Systems, Argentina. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Advances in Agroforestry 12, Chapter 19; Montagnini, F., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 453–478. [Google Scholar]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Chartier, M.P.; Rostagno, C.M.; Roig, F.A. Soil erosion rates in rangelands of northeastern Patagonia: A dendrogeomorphological analysis using exposed shrub roots. Geomorphology 2009, 106, 344–351. [Google Scholar] [CrossRef]
- Hemingway, A.; Hemingway, C. Respiration of sheep at thermoneutral temperature. Respir. Physiol. 1966, 1, 30–37. [Google Scholar] [CrossRef]
- Kiani, A.; Chwalibog, A.; Nielsen, M.O.; Tauson, A.-H. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach. Arch. Anim. Nutr. 2007, 61, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Blanes-Vidal, V.; Joergensen, H.; Chwalibog, A.; Haeussermann, A.; Heetkamp, M.J.W.; Aarnink, A.J.A. Carbon Dioxide Production in Animal Houses: A literature Review. Eng. Int. CIGR J. 2008. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/1205 (accessed on 1 March 2020).
- Andrade, M.; Suarez, D.; Peri, P.L.; Borrelli, P.; Ormaechea, S.; Ferrante, D.; Rivera, E.; Sturzenbaum, M.V. Desarrollo de un Modelo de Asignación Variable de Carga Animal en Patagonia Sur; Ediciones Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2015. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; VanStraaten, O.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Jenness, J. Some Thoughts on Analyzing Topographic Habitat Characteristics. Available online: http://www.jennessent.com/downloads/topographic_analysis_online.pdf (accessed on 10 April 2020).
- ORNL DAAC. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool; ORNL DAAC: Oak Ridge, TN, USA, 2008. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Del Valle, H.F.; Elissalde, N.O.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Land Res. Manag. 1998, 12, 95–121. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 4th ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Jones, A.K.; Jones, D.L.; Cross, P. The carbon footprint of lamb: Sources of variation and opportunities for mitigation. Agric. Syst. 2014, 123, 97–107. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; de Boer, I.J.M.; Bernués, A.; Vellinga, T.V. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agric. Syst. 2013, 116, 60–68. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Peri, P.L.; Lasagno, R.; Martínez Pastur, G.; Atkinson, R.; Thomas, E.; Ladd, B. Soil carbon is a useful surrogate for conservation planning in developing nations. Sci. Rep. Nat. 2019, 9, 3905. [Google Scholar] [CrossRef]
- Schonbach, P.; Wolf, B.; Dickhofer, U.; Wiesmeier, M.; Chen, W.; Wan, H.; Gierus, M.; Butterbach-Bahl, K.; Kogel-Knabner, I.; Susenbeth, A.; et al. Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutr. Cycl. Agroecosyst. 2012, 93, 357–371. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Lieffering, M.; Coup, D.; O’Brien, B. Carbon footprinting of New Zealand lamb from the perspective of an exporting nation. Anim. Front. 2011, 1, 40–45. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Wiedemann, S.; McGahan, E.; Murphy, C.; Yan, M.-J.; Henry, B.; Thoma, G.; Ledgard, S. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J. Clean. Prod. 2015, 94, 67e75. [Google Scholar] [CrossRef]
- Wiedemann, S.; Ledgard, S.; Henry, B.K.; Yan, M.-J.; Mao, N.; Russell, S.J. Application of life cycle assessment to sheep production systems: investigating co-production of wool and meat using case studies from major global producers. Int. J. Life Cycle Assess. 2015, 20, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Eady, S.; Carre, A.; Grant, T. Life cycle assessment modelling of complex agricultural systems with multiple food and fibre co-products. J. Clean Prod. 2012, 28, 143–149. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. Holistic Analysis of GHG Emissions from Irish Livestock Production Systems; Paper No. 054036; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Gac, A.; Ledgard, S.; Lorinquer, E.; Boyes, M.; Le Gall, A. Carbon footprint of sheep farms in France and New Zealand and methodology analysis. In Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector; Corson, M.S., der Werf, H.M.G., Eds.; INRA: Saint Malo, Rennes, France, 2012; pp. 310–314. [Google Scholar]
- Bell, M.J.; Eckard, R.J.; Cullen, B.R. The effect of future climate scenarios on the balance between productivity and greenhouse gas emissions from a sheep grazing system. Livest. Sci. 2012, 147, 126–138. [Google Scholar] [CrossRef]
- Wiedemann, S.; Ledgard, S.; Henry, B.K.; Yan, M.-J.; Mao, N.; Russell, S.J. Resource use and greenhouse gas emissions from three wool production regions in Australia. J. Clean. Prod. 2016, 122, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Cottle, D.J.; Cowie, A.L. Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. The International J. Life Cycle Assess. 2016, 21, 820–830. [Google Scholar] [CrossRef]
- Brock, P.M.; Graham, P.; Madden, P.; Alcock, D.J. Greenhouse gas emissions profile for 1 kg of wool produced in the Yass Region, New South Wales: A Life Cycle Assessment approach. Anim. Prod. Sci. 2013, 53, 495–508. [Google Scholar] [CrossRef]
- Alcock, D.; Hegarty, R.S. Effects of pasture improvement on productivity, gross margin and methane emissions of a grazing sheep enterprise. Int. Congr. Ser. 2006, 1293, 103–106. [Google Scholar] [CrossRef]
- Hegarty, R.S. Mechanisms for competitively reducing ruminal methanogenesis. Aust. J. Agric. Res. 1999, 50, 1299–1305. [Google Scholar] [CrossRef]
- Bayat, A.R.; Tapio, I.; Vilkki, J.; Shingfield, K.J.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Gerber, G. Livestock production and the global environment. Consume less or produce better? Proc. Natl. Acad. Sci. USA 2010, 107, 18237–18238. [Google Scholar] [CrossRef] [Green Version]
- Martínez Pastur, G.; Peri, P.L.; Lencinas, M.V.; Garcia-Llorente, M.; Nartin-Lopez, B. Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
- De Boer, I.J.M. Environmental impact assessment of conventional and organic milk production. Livest. Prod. Sci. 2003, 80, 69–77. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Martínez Pastur, G. Potential biodiversity map of lizard species in Southern Patagonia: environmental characterization, desertification influence and analyses of protection areas. Amphib. Reptil. 2018, 39, 289–301. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Carrara, R.; Flores, G.E.; Pedrana, J.; Martínez Pastur, G. Potential biodiversity map of darkling beetles (Tenebrionidae): Environmental characterization, land-uses and analyses of protection areas in Southern Patagonia. J. Insect Conserv. 2019, 23, 885–897. [Google Scholar] [CrossRef]
Ecological Area | AMT (°C) | AP (mm/yr) | NDVI (Dimensionless) | ANPP (g C/m2/yr1) | ELE (m.a.s.l.) |
---|---|---|---|---|---|
Andean region | 5.9 | 442 | 0.64 | 286 | 454 |
Humid Magellanic steppe | 5.4 | 354 | 0.54 | 271 | 337 |
Dry Magellanic steppe | 6.4 | 227 | 0.34 | 196 | 166 |
Mata Negra thicket | 6.6 | 162 | 0.22 | 120 | 299 |
Central Plateau | 8.4 | 192 | 0.17 | 111 | 315 |
Farm and Flock Structure | Mean | Range |
---|---|---|
Farm area (ha) | 24,760 | 20,000–30,000 |
Breeding ewe flock size (head/farm) | 8500 | 5000–22,500 |
Stocking rate (PSUE/ha/yr) | 0.35 | 0.20–0.75 |
Inputs | ||
Fuel diesel for electricity, tractor, and transportation (l/yr) | 15,000 | 5800–16,000 |
Gas in tubes (kg/yr) | 2700 | 1600–4900 |
Firewood and coal for heating (t/yr) | 37 | 21–64 |
Outputs | ||
Average live weight of lambs sold (kg) | 22.5 | 20–25 |
Greasy wool (kg/animal) | 4.7 | 4.2–5.0 |
Productivity indicators | ||
Lambing (%) | 78 | 70–90 |
Lamb growth rate from birth to finishing after 100 days (g/day) | 185 | 170–200 |
Breeding ewe replacement rate (%) | 27 | 25–30 |
Lamb Industry | Range |
---|---|
Total factory production (t carcass meat/yr) | 600–1600 |
Working capacity (kg meat carcass/day) | 10,000–30,000 |
Fresh water consumption (100% consumptive) (l/t carcass) | 6000–8000 |
Electricity (MWh/yr) | 2100–14,500 |
Natural Gas (m3/yr) | 70,000–120,000 |
Diesel (l/yr) | 1700–2500 |
Wool industry | |
Total factory output (t wool/yr) | 7000–8000 |
Fresh water consumption (100% consumptive) (l/t wool) | 65,000–71,000 |
Electricity (MWh/yr) | 6000–7000 |
Natural Gas (m3/yr) | 2,500,000–280,000 |
Diesel (l/yr) | 11,350–14,200 |
Category | Description | Code | Unit | Data Source |
---|---|---|---|---|
Climate | mean annual temperature | AMT | °C | WorldClim(1) |
mean diurnal range | MDR | °C | WorldClim(1) | |
isothermality | ISO | % | WorldClim(1) | |
temperature seasonality | TS | °C | WorldClim(1) | |
max temperature of warmest month | MAXWM | °C | WorldClim(1) | |
min temperature of coldest month | MINCM | °C | WorldClim(1) | |
temperature annual range | TAR | °C | WorldClim(1) | |
mean temperature of wettest quarter | MTWEQ | °C | WorldClim(1) | |
mean temperature of driest quarter | MTDQ | °C | WorldClim(1) | |
mean temperature of warmest quarter | MTWAQ | °C | WorldClim(1) | |
mean temperature of coldest quarter | MTCQ | °C | WorldClim(1) | |
mean annual precipitation | AP | mm.years-1 | WorldClim(1) | |
precipitation of wettest month | PWEM | mm.years-1 | WorldClim(1) | |
precipitation of driest month | PDM | mm.years-1 | WorldClim(1) | |
precipitation seasonality | PS | % | WorldClim(1) | |
precipitation of wettest quarter | PWEQ | mm.years-1 | WorldClim(1) | |
precipitation of driest quarter | PDQ | mm.years-1 | WorldClim(1) | |
precipitation of warmest quarter | PWAQ | mm.years-1 | WorldClim(1) | |
precipitation of coldest quarter | PCQ | mm.years-1 | WorldClim(1) | |
global potential evapo-transpiration | EVTP | mm.years-1 | CSI (2) | |
global aridity index | GAI | CSI (2) | ||
Topography | Elevation (meters above sea level) | ELE | m.a.s.l. | DEM(3) |
slope | SLO | ° | DEM(3) | |
aspect cosine | ASPC | cosine | DEM(3) | |
aspect sine | ASPS | sine | DEM(3) | |
distance to population centers | DL | km | SIT Santa Cruz(4) | |
distance to lakes | DLK | km | SIT Santa Cruz(4) | |
distance to rivers | DR | km | SIT Santa Cruz(4) | |
distance to roads | DW | km | SIT Santa Cruz(4) | |
Landscape and land use | normalized difference vegetation index | NDVI | MODIS(5) | |
annual net primary productivity | ANPP | g C.m2.year-1 | MODIS(6) | |
desertification | DES | degree | CENPAT(7) |
Ecological Area | Grassland Condition | kg CO2-eq/kg Live Weight Lamb | kg CO2-eq/kg Greasy Wool |
---|---|---|---|
Andean region | Overgrazed | 13.92 | 8.82 |
Good | 12.15 | 7.83 | |
Mean | 12.85 | 8.15 | |
Humid Magellanic Steppe | Overgrazed | 23.55 | 12.37 |
Good | 15.42 | 11.46 | |
Mean | 20.64 | 12.15 | |
Dry Magellanic Steppe | Overgrazed | 26.05 | 13.74 |
Good | 16.02 | 12.43 | |
Mean | 22.74 | 13.28 | |
Mata Negra Thicket | Overgrazed | 33.31 | 14.66 |
Good | 22.71 | 13.29 | |
Mean | 30.11 | 14.15 | |
Central Plateau | Overgrazed | 38.45 | 16.92 |
Good | 25.87 | 15.13 | |
Mean | 35.16 | 16.33 |
System and Methods | Country | Carbon Footprint (kg CO2-eq/kg product) | Reference |
---|---|---|---|
Lamb | |||
Conventional extensive with real farm data Modeled at the regional scale | Patagonia, Argentina | 12.2–38.4 7.2–37.9 | This study This study |
Conventional with real farm data | Wales, UK | 8.1–31.7 | Edwards-Jones et al. [10] |
Average sheep system in Ireland | Ireland | 10 | Casey and Holden [48] |
Conventional with real farm data (lowland—27 farms, upland—12 farms, hill—21 farms) | UK | 10.8–17.9 | Jones et al. [38] |
Model and real farm data (three systems) | Spain | 19.5–25.9 | Ripoll-Bosch et al. [39] |
Survey from 104 farms | France | 12.9 | Gac et al. [49] |
Model | Australia | 10.1–21.7 | Bell et al. [50] |
Model | Australia | 14.4 | Wiedemann et al. [45] |
Survey from 437 farms | New Zealand | 8–10 | Ledgard et al. [43] |
Experimental study sites with different grazing intensity levels | Northern China | 10.4–92.0 | Schonbach et al. [42] |
Greasy wool | |||
Conventional extensive with real farm data modeled at the regional scale | Patagonia, Argentina | 7.8–16.9 7.8–18.7 | This study This study |
Study cases | Australia, New Zealand, UK | 10–12 | Wiedemann et al. [46] |
Farm-scale data in three contrasting regions | Australia | 19.5–25.1 | Wiedemann et al. [51] |
Study case | Australia | 36.2 | Eady et al. [47] |
Inventory data for two Merino farms and model | Australia | 8.5–8.7 | Cottle and Cowie [52] |
4941 breeding ewe enterprise on 1000 ha | Australia | 14.8–24.9 | Brock et al. [53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peri, P.L.; Rosas, Y.M.; Ladd, B.; Díaz-Delgado, R.; Martínez Pastur, G. Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia. Sustainability 2020, 12, 3077. https://doi.org/10.3390/su12083077
Peri PL, Rosas YM, Ladd B, Díaz-Delgado R, Martínez Pastur G. Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia. Sustainability. 2020; 12(8):3077. https://doi.org/10.3390/su12083077
Chicago/Turabian StylePeri, Pablo L., Yamina M. Rosas, Brenton Ladd, Ricardo Díaz-Delgado, and Guillermo Martínez Pastur. 2020. "Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia" Sustainability 12, no. 8: 3077. https://doi.org/10.3390/su12083077
APA StylePeri, P. L., Rosas, Y. M., Ladd, B., Díaz-Delgado, R., & Martínez Pastur, G. (2020). Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia. Sustainability, 12(8), 3077. https://doi.org/10.3390/su12083077