Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Packaging
2.1.1. Primary Packaging
2.1.2. Secondary Packaging
2.1.3. Tertiary Packaging
2.2. Life Cycle Assessment
2.2.1. System Boundaries and Functional Unit
2.2.2. Assumptions Accepted in the Study:
- To model electricity production, the Czech energy mix was used based on the data from the reference year of 2016;
- The number of possible uses (re-circulation) of refundable glass was set to 30 [19];
- The number of possible uses of plastic crates was set to 30 [19];
- The number of possible uses of wooden pallets was set to 25 [19];
- The materials used for the packaging were modelled as the materials derived from the primary raw materials;
- Packaging labels and stickers were not included in the study;
- The methods of transport and the transport distance were modelled for the production of the products and their packaging according to the recommendation of Guidance for the development of Product Environmental Footprint Category Rules - PEF [19]:
- ○
- Transport distance of packaging from a supplier to a processor within Europe was set to 230 km of truck transport, 280 km of rail transport, 360 km of shipping;
- ○
- Transport of products from a supplier to a processor within Europe was set to 130 km of truck transport, 240 km of rail transport, 270 km of shipping.
- For the transport of packaging to the place of material recovery after the end-of-its-life cycle, the packaging is supposed to be transported by trucks over the distance of 250 km. In the case of transport to places of energy recovery, the average distance is estimated to be 150 km and the transport distance of packaging to a landfill is expected to be ca. 50 km.
2.2.3. End-of-Life Scenarios
2.3. Life Cycle Inventory
2.3.1. Cow’s Milk
2.3.2. Drinking Water
2.3.3. Pork
2.3.4. Peas
2.4. Calculation of PtP Indicator Focused on Carbon Footprint
Data Evaluation
3. Results
3.1. Cow’s Milk
3.2. Water
3.3. Pork
3.4. Peas
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Packaging Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Packaging_waste_statistics#Waste_generation_by_packaging_material (accessed on 30 January 2020).
- Pongrácz, E. The Environmental Impacts of Packaging. In Environmentally Conscious Materials and Chemicals Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 237–278. [Google Scholar]
- Kandziora, J.H.; van Toulon, N.; Sobral, P.; Taylor, H.L.; Ribbink, A.J.; Jambeck, J.R.; Werner, S. The Important Role of Marine Debris Networks to Prevent and Reduce Ocean Plastic Pollution. Mar. Pollut. Bull. 2019, 141, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Mucientes, G.; Queiroz, N. Presence of Plastic Debris and Retained Fishing Hooks in Oceanic Sharks. Mar. Pollut. Bull. 2019, 143, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Laurijssen, J.; Faaij, A.; Worrell, E. Benchmarking Energy Use in the Paper Industry: A Benchmarking Study on Process Unit Level. Energy Effic. 2013, 6, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.B.H.; Khoo, H.H. An LCA Study of a Primary Aluminum Supply Chain. J. Clean. Prod. 2005, 13, 607–618. [Google Scholar] [CrossRef]
- Xie, M.; Qiao, Q.; Sun, Q.; Zhang, L. Life Cycle Assessment of Composite Packaging Waste Management—A Chinese Case Study on Aseptic Packaging. Int. J. Life Cycle Assess. 2013, 18, 626–635. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(Ethylene Terephthalate). Polymers (Basel) 2013, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Meneses, M.; Pasqualino, J.; Castells, F. Environmental Assessment of the Milk Life Cycle: The Effect of Packaging Selection and the Variability of Milk Production Data. J. Environ. Manag. 2012, 107, 76–83. [Google Scholar] [CrossRef]
- Silvenius, F.; Katajajuuri, J.; Grönman, K. Role of Packaging in LCA of Food Products. In Towards Life Cycle Sustainability Management; Springer Science: Dordrecht, Holland, 2011; pp. 359–370. [Google Scholar]
- Heller, M.C.; Selke, S.E.M.; Keoleian, G.A. Mapping the Influence of Food Waste in Food Packaging Environmental Performance Assessments. J. Ind. Ecol. 2018, 23, 480–495. [Google Scholar] [CrossRef] [Green Version]
- Leuenberger, M.; Jungbluth, N.; Büsser, S. Environmental Impact of Canteen Meals: Comparison of Vegetarian and Meat Based Recipes. In Proceedings of the International Conference on LCA in the Agri-Food, Bari, Italy, 22–24 September 2010; p. 5. [Google Scholar]
- International Organization for Standartization. ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Guidelines; European Committee for Standardization: Brusel, Belgium, 2006. [Google Scholar]
- International Organization for Standartization. ISO 14044: Environmental Management—Life Cycle Assessment—Requirements and Gudelines; European Committee for Standardization: Brusel, Belgium, 2006. [Google Scholar]
- Curran, M.A. Life Cycle Assessment Handbook; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Spotřeba Potravin a Nealkoholických Nápojů. Available online: https://www.czso.cz/csu/czso/spotreba-potravin-2017 (accessed on 3 February 2020).
- Sphera. Life Cycle ssessment LCA Software: GaBi Software. 2020. Available online: http://www.gabi-software.com/ (accessed on 30 January 2020).
- Ecoinvent. The ecoinvent Database. 2020. Available online: https://www.ecoinvent.org/ (accessed on 30 January 2020).
- European Commission. PEFCR Guidance Document—Guidance for the Development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3; European Commision: Brussels, Belgium, 2017. [Google Scholar]
- Produkce, Využití a Odstranění Odpadů. 2017. Available online: https://www.czso.cz/csu/czso/produkce-vyuziti-a-odstraneni-odpadu-2017 (accessed on 3 February 2020).
- Tichá, M. Porovnání environmentálních dopadů nápojových obalů v ČR metodou LCA; Report of Ministry of Environment of the Czech Republic: Prague, Czech Republic, 2009; p. 74. [Google Scholar]
- Waste & Resources Action Programme. Secondary Packaging Benchmarking across the Grocery Sector; Report of Waste & Resources Action Programme: Oxford, UK, 2014; p. 57. [Google Scholar]
- Ghenai, C. Life Cycle Assessment of Packaging Materials for Milk and Dairy Products. Int. J. Therm. Environ. Eng. 2012, 4, 117–128. [Google Scholar]
- Jelse, K.; Elin, E.; Elin, E. Life Cycle Assessment of Consumer Packaging for Liquid Food—LCA of Tetra Pak and Alternative Packaging on the Nordic Market; Report of Swedish Environmetal Research Institute: Stockholm, Sweden, 2009; p. 160. [Google Scholar]
- Meyhoff, F.J.; Hartlin, B.; Wallén, E.; Aumônier, S. Life Cycle Assessment of Example Packaging Systems for Milk; Report of Waste & Resources Action Programme: Banbury, UK, 2010; p. 125. [Google Scholar]
- Přibylová, M. Skleněné a PET Lahve Na Minerální Vody: Posuzování Životního Cyklu; Report of Hnutí Duha: Olomouc, Czech Republic, 2000; p. 65. [Google Scholar]
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Mousavi Khaneghah, A.; de Sant’Ana, A.S.; Rana, R.; Siracusa, V. Foamy Polystyrene Trays for Fresh-Meat Packaging: Life-Cycle Inventory Data Collection and Environmental Impact Assessment. Food Res. Int. 2015, 76, 418–426. [Google Scholar] [CrossRef]
- Albrecht, S.; Brandstetter, P.; Beck, T.; Fullana-I-Palmer, P.; Grönman, K.; Baitz, M.; Deimling, S.; Sandilands, J.; Fischer, M. An Extended Life Cycle Analysis of Packaging Systems for Fruit and Vegetable Transport in Europe. Int. J. Life Cycle Assess. 2013, 18, 1549–1567. [Google Scholar] [CrossRef]
- Fazio, S.; Biganzioli, F.; De Laurentiis, V.; Zampori, L.; Sala, S.; Diaconu, E. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods; Report of European Commission: Ispra, Italy, 2018; p. 49. [Google Scholar]
- Christensen, J.; Olhoff, A. Lessons from a Decade of Emissions Gap Assessments; Report of United Nations Environmental Programme: Nairobi, Kenya, 2019; p. 18. [Google Scholar]
- Emissions Gap Report 2019; Report of United Nation Environment Programme: Nairobi, Kenya, 2019; p. 108.
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Santos, H.C.M.; Maranduba, H.L.; de Almeida Neto, J.A.; Rodrigues, L.B. Life Cycle Assessment of Cheese Production Process in a Small-Sized Dairy Industry in Brazil. Environ. Sci. Pollut. Res. 2017, 24, 3470–3482. [Google Scholar] [CrossRef]
- Molina-Besch, K.; Wikström, F.; Williams, H. The Environmental Impact of Packaging in Food Supply Chains—Does Life Cycle Assessment of Food Provide the Full Picture? Int. J. Life Cycle Assess. 2018, 24, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- He, B.; Liu, Y.; Zeng, L.; Wang, S.; Zhang, D.; Yu, Q. Product Carbon Footprint across Sustainable Supply Chain. J. Clean. Prod. 2019, 241, 118320. [Google Scholar] [CrossRef]
- Lo-Iacono-Ferreira, V.G.; Viñoles-Cebolla, R.; Bastante-Ceca, M.J.; Capuz-Rizo, S.F. Transport of Spanish Fruit and Vegetables in Cardboard Boxes: A Carbon Footprint Analysis. J. Clean. Prod. 2019, 244, 118784. [Google Scholar] [CrossRef]
- Vasilaki, V.; Katsou, E.; Ponsá, S.; Colón, J. Water and Carbon Footprint of Selected Dairy Products: A Case Study in Catalonia. J. Clean. Prod. 2016, 139, 504–516. [Google Scholar] [CrossRef]
- Cimini, A.; Moresi, M. Mitigation Measures to Minimize the Cradle-to-Grave Beer Carbon Footprint as Related to the Brewery Size and Primary Packaging Materials. J. Food Eng. 2018, 236, 1–8. [Google Scholar] [CrossRef]
- Olsmats, C.; Dominic, C. Packaging Scorecard—A Packaging Performance Evaluation Method. Packag. Technol. Sci. 2003, 16, 9–14. [Google Scholar] [CrossRef]
- Walmart Scorecard. Available online: https://www.greenerpackage.com/walmart_scorecard (accessed on 28 November 2019).
- Fantin, V.; Scalbi, S.; Ottaviano, G.; Masoni, P. A Method for Improving Reliability and Relevance of LCA Reviews: The Case of Life-Cycle Greenhouse Gas Emissions of Tap and Bottled Water. Sci. Total Environ. 2014, 476–477, 228–241. [Google Scholar] [CrossRef]
- Maga, D.; Hiebel, M.; Aryan, V. A Comparative Life Cycle Assessment of Meat Trays Made of Various Packaging Materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Schmid, A.; Mendoza, J.M.F.; Azapagic, A. Environmental Impacts of Takeaway Food Containers. J. Clean. Prod. 2019, 211, 417–427. [Google Scholar] [CrossRef]
- Hedayati, M.; Brock, P.M.; Nachimuthu, G.; Schwenke, G. Farm-Level Strategies to Reduce the Life Cycle Greenhouse Gas Emissions of Cotton Production: An Australian Perspective. J. Clean. Prod. 2019, 212, 974–985. [Google Scholar] [CrossRef]
- Kočí, V. Porovnání Environmentálních Dopadů Odnosných Tašek z Různých Materiálů Metodou Posuzování Životního Cyklu—LCA; Report of University of Chemistry and Technology in Prague: Prague, Czech Republic, 2018; p. 102. [Google Scholar]
Primary Packaging Material | Primary Pack. weight per 1 kg of Product [g] | Secondary Packaging Material | Secondary Pack. Weight per 1 kg of Product [g] | Tertiary Packaging Material | Tertiary Pack. Weight per 1 kg of Product [g] | Source of Data |
---|---|---|---|---|---|---|
PET bottle, HDPE cap | 35.7 3.0 | HDPE foil Corrugated cardboard box | 2.9 4.4 | Wooden pallet HDPE foil | 29.6 0.1 | [21,22], Producer of pack. mat. |
Non-refundable glass bottle metal cap | 410.0 2.0 | HDPE foil Corrugated cardboard box | 4.00 × 10−2 29.0 | Wooden pallet HDPE foil | 29.6 0.1 | [22,23], Producer of pack. mat. |
Liquid packaging board HDPE cap | 30.7 1.7 | LDPE foil Corrugated cardboard box | 0.5 13.9 | Wooden pallet HDPE foil | 25.0 0.1 | [21,22,24], Producer of pack. mat. |
LDPE bag PP cap | 3.8 5.8 | LDPE foil Corrugated cardboard box | 0.03 7.00 × 10−2 | Wooden pallet HDPE foil | 25.0 0.1 | [25], Producer of pack. mat. |
Primary Packaging Material | Primary Pack. Weight per 1 kg of Product [g] | Secondary Packaging Material | Secondary Pack. Weight per 1 kg of Product [g] | Tertiary Packaging Material | Tertiary Pack. Weight per 1 kg of Product [g] | Source of Data Material |
---|---|---|---|---|---|---|
PET bottle HDPE cap | 21.3 1.3 | LDPE foil | 2.0 | Wooden pallet HDPE foil | 29.6 0.1 | [21], Own measurement, Producer of pack. mat. |
Refundable glass bottle Metal cap | 629.0 4.3 | HDPE crate | 4.8 | Wooden pallet LDPE foil | 4.8 0.1 | [21,26], Producer of pack. mat. |
Non-refundable glass bottle metal cap | 629.0 4.3 | Cardboard box, LDPE foil | 29; 0.04 | Wooden pallet LDPE foil | 4.8 0.1 | [21], Producer of pack. mat. |
HDPE sack | 6.0 | LDPE sack | 2.0 | Wooden pallet HDPE foil | 2.5 2.50 × 10−2 | Own assumption, Producer of pack. mat. |
Primary Packaging Material | Primary Pack. Weight per 1 kg of Product [g] | Secondary Packaging Material | Secondary Pack. Weight per 1 kg of Product [g] | Tertiary Packaging Material | Tertiary Pack. Weight per 1 kg of Product [g] | Source of Data Material |
---|---|---|---|---|---|---|
PS Tray LDPE foil | 17.8 0.2 | HDPE | 0.4 | LDPE tray | 34.0 | [27,28], Own measurement |
Aluminium foil | 20.0 | HDPE | 0.4 | LDPE tray | 34.0 | [27], Own measurement |
Waxed paper | 2.0 | HDPE | 0.4 | LDPE tray | 34.0 | [27], Own measurement |
Paper HDPE foil | 33.0 9.0 | HDPE | 0.4 | LDPE tray | 34.0 | [27], Own measurement |
Primary Packaging Material | Primary Pack. Weight per 1 kg of Product [g] | Secondary Packaging Material | Secondary Pack. Weight per 1 kg of Product [g] | Tertiary Packaging Material | Tertiary Pack. Weight per 1 kg of Product [g] | Source of Data Material |
---|---|---|---|---|---|---|
Corrugated cardboard box | 50.0 | Corrugated cardboard box | 25.0 | Wooden pallet HDPE foil | 29.6 0.1 | Producer of pack. mat. |
PP sack | 12.0 | Corrugated cardboard box | 27.3 | Wooden pallet HDPE foil | 24.2 0.1 | Producer of pack. mat. |
Cotton sack | 80.0 | Corrugated cardboard box | 27.3 | Wooden pallet HDPE foil | 24.2 0.1 | Own assumption, Producer of pack. mat. |
Paper sack | 8.0 | LDPE | 2.0 | Wooden pallet HDPE foil | 25.0 0.1 | Producer of pack. mat. |
Packaging System | CZ EoL Mix [kg CO2 eq.] | Energy Recovery [kg CO2 eq.] | Material Recovery [kg CO2 eq.] | Landfilling [kg CO2 eq.] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | |
Liquid packaging board | 71.1 | 22.4 | 7.2 | 78.9 | 16.2 | 6.5 | 52.0 | 3.7 | 5.7 | 99.6 | 34.6 | 8.3 |
PET bottle | 156.6 | 16.4 | 8.5 | 271.0 | 18.9 | 7.7 | 27.7 | 10.5 | 6.7 | 189.0 | 18.8 | 9.8 |
LDPE bag | 15.2 | 0.5 | 7.2 | 26.5 | 0.9 | 6.3 | 8.8 | 0.3 | 5.7 | 14.8 | 0.6 | 8.3 |
Non-refundable glass | 299.0 | 47.4 | 8.5 | 43.0 | 28.0 | 7.7 | 54.5 | 18.8 | 6.7 | 386.0 | 69.4 | 9.8 |
Packaging System | CZ EoL Mix [kg CO2 eq.] | Energy Recovery [kg CO2 eq.] | Material Recovery [kg CO2 eq.] | Landfilling [kg CO2 eq.] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | ||
PET bottle | 106.0 | 12.3 | 8.5 | 160.0 | 18.7 | 7.7 | 61.9 | 5.9 | 6.7 | 112.0 | 13.6 | 9.8 | |
HDPE sack | 16.0 | 3.4 | 5.7 | 28.1 | 9.9 | 6.5 | 9.7 | 3.4 | 5.7 | 15.3 | 5.7 | 8.3 | |
Non-refundable glass | 459.0 | 47.3 | 2.9 | 669.0 | 28.7 | 2.9 | 84.5 | 18.6 | 2.3 | 593.0 | 69.3 | 3.3 | |
Refundable glass | 49.1 | 0.4 | 2.9 | 54.0 | 0.7 | 2.9 | 34.5 | 0.2 | 2.3 | 51.5 | 0.4 | 3.3 |
Packaging System | CZ EoL Mix [kg CO2 eq.] | Energy Recovery [kg CO2 eq.] | Material Recovery [kg CO2 eq.] | Landfilling [kg CO2 eq.] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | |
PS tray | 63.1 | 1.1 | 2.2 | 111.0 | 1.9 | 3.6 | 16.8 | 0.7 | 1.4 | 72.2 | 1.1 | 2.2 |
Aluminium foil | 120.0 | 1.1 | 2.2 | 42.4 | 1.9 | 3.6 | 38.3 | 0.7 | 1.4 | 191.0 | 1.1 | 2.2 |
Waxed paper | 2.2 | 1.1 | 2.2 | 0.8 | 1.9 | 3.6 | 0.8 | 0.7 | 1.4 | 3.6 | 1.1 | 2.2 |
Paper/Plastic sack | 34.0 | 1.1 | 2.2 | 12.0 | 1.9 | 3.6 | 4.0 | 0.7 | 1.4 | 57.9 | 1.1 | 2.2 |
Packaging System | CZ EoL Mix [kg CO2 eq.] | Energy Recovery [kg CO2 eq.] | Material Recovery [kg CO2 eq.] | Landfilling [kg CO2 eq.] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | Prim | Sec | Ter | |
PP sack | 29.8 | 24.1 | 6.7 | 57.3 | 8.2 | 6.0 | 18.6 | 2.6 | 5.4 | 31.7 | 46.4 | 7.9 |
Cardboard box | 81.5 | 40.8 | 8.4 | 49.5 | 24.7 | 7.3 | 32.1 | 16.0 | 6.6 | 120.0 | 59.8 | 9.6 |
Cotton sack | 810.0 | 26.8 | 6.8 | 763.0 | 8.2 | 6.0 | 763.0 | 2.6 | 5.4 | 856.0 | 46.4 | 7.9 |
Paper sack | 7.9 | 3.7 | 7.0 | 2.4 | 8.5 | 6.5 | 0.8 | 1.5 | 5.7 | 13.6 | 4.2 | 8.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šerešová, M.; Kočí, V. Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic. Sustainability 2020, 12, 3034. https://doi.org/10.3390/su12073034
Šerešová M, Kočí V. Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic. Sustainability. 2020; 12(7):3034. https://doi.org/10.3390/su12073034
Chicago/Turabian StyleŠerešová, Markéta, and Vladimír Kočí. 2020. "Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic" Sustainability 12, no. 7: 3034. https://doi.org/10.3390/su12073034
APA StyleŠerešová, M., & Kočí, V. (2020). Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic. Sustainability, 12(7), 3034. https://doi.org/10.3390/su12073034