Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy
Abstract
:1. Introduction
- What are the land covers that mainly influence the LST spatial distribution in the Sardinian case study?
- What policies and strategies might be helpful in mitigating LST at the regional scale?
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. LST Extraction and Mapping at the Regional Scale
2.3.2. Land Covers and Elevation
2.3.3. Input Table for the Regression
2.3.4. Land Covers and LST
- explanatory variables from URB through to OPSP, which represent the LEAC groups, are dichotomous variables; each variable can take either of the two values, 1 or 0, according to whether the area size of a LEAC group in a cell takes the largest value with respect to the area sizes of the other groups; therefore, if in a cell the URB group shows the largest area size, the variable URB equals 1, otherwise it equals 0; if in a cell the APC group shows the largest area size, the variable APC equals 1, otherwise it equals 0, and so on; each coefficient estimated by regression (1), βi, i = 1, …, 6, identifies the change in LST related to a cell in case it shows the largest area size identified by the variable associated to the coefficient βi (i.e., URB, APC, etc.) with respect to the basic condition that the largest area size of the cell is identified by the variable WAT (Wetlands and water bodies); the coefficients estimated by regression (1), βi, i = 1, …, 6, define a taxonomy of the zone types based on the quantitative contribution to LST expressed by the values of βi, i = 1, …, 6;
- ALTIT is the altitude in meters related to the polygon, calculated as described in Section 2.3.2.;
- LATD is the latitude in meters of the polygon’s centroid, as per Section 2.3.3.;
- W (standing for “West”) is a dichotomous variable which can take either of the two values, 1 or 0, as described in Section 2.3.3.
3. Results
3.1. LST Spatial Taxonomy Results
3.2. Regression Results
4. Discussion
5. Urban Planning and Policy Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- TOA is the top-of-atmosphere spectral radiance (W/(m2 · sr · μm));
- ML is the band-specific multiplicative rescaling factor (retrievable from the image’s metadata, provided by USGS as a plain text file together with the image, as “RADIANCE_MULT_BAND_10”);
- Qcal is the band 10 image pixel values (i.e., digital numbers), quantized and calibrated;
- AL is the band-specific additive rescaling factor (retrievable from the image’s metadata, provided by USGS as plain text file together with the image, as “RADIANCE_ADD_BAND_10”).
- BT is the top-of-atmosphere brightness temperature (K);
- TOA is the top-of-atmosphere spectral radiance;
- K1 and K2 are two specific thermal conversion constants (retrievable from the image’s metadata, provided by USGS as a plain text file together with the image, as “K1_CONSTANT_BAND_10”and “K2_CONSTANT_BAND_10”, respectively).
- NDVI is the normalized difference vegetation index;
- NIR is the near-infrared band. For Landsat 8 images, this is band 5;
- Red is the visible red band. For Landsat 8 images, this is band 4.
NDVI | LSE |
---|---|
NDVI < −0.185 | 0.995 |
−0.185 ≤ NDVI < 0.157 | 0.985 |
0.157 ≤ NDVI ≤ 0.727 | 1.009 + 0.047 · ln(NDVI) |
NDVI > 0.727 | 0.990 |
- LST is land surface temperature (K);
- BT is top-of-atmosphere brightness temperature (K);
- LSE is land surface emissivity;
- λ is wavelength of the emitted radiance (m) = 1.0895·10−5 m for Landsat 8 TIRS [90];
- α = h·c/σ (where h is Planck’s constant, c is the velocity of light, and σ is Boltzmann’s constant) = 1.438·10−2 mK [91].
References
- Nguyen, T.M.; Lin, T.-H.; Chan, H.-P. The environmental effects of urban development in Hanoi, Vietnam from satellite and meteorological observations from 1999–2016. Sustainability 2019, 11, 1768. [Google Scholar] [CrossRef] [Green Version]
- Chadchan, J.; Shankar, R. Emerging urban development issues in the context of globalisation. J. ITPI 2009, 6, 78–85. [Google Scholar]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Baik, J.-J. Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Munafò, M. (Ed.) Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2019; Report SNPA 08/19 [Land Take, Territorial Dynamics and Ecosystem Services. 2019 Edition. SNPA Report SNPA 08/19, 2019]; SNPA: Atlanta, GA, USA, 2019; ISBN 978-88-448-0964-5. [Google Scholar]
- Feizizadeh, B.; Blaschke, T.; Nazmfar, H.; Akbari, E.; Kohbanani, H.R. Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. J. Environ. Plann. Manag. 2013, 56, 1290–1315. [Google Scholar] [CrossRef]
- Fonseka, H.P.U.; Zhang, H.; Sun, Y.; Su, H.; Lin, H.; Lin, Y. Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Remote Sens. 2019, 11, 957. [Google Scholar] [CrossRef] [Green Version]
- Hofierka, J.; Gallay, M.; Onačillová, K.; Hofierka, J., Jr. Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data. Urban Clim. 2020, 31, 100566. [Google Scholar] [CrossRef]
- Lv, Z.; Zhou, Q. Utility of Landsat image in the study of land cover and land surface temperature change. Procedia Environ. Sci. 2011, 10, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101984. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Myint, S.W.; Zhao, Q.; Wentz, E.A. Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landsc. Urban Plan. 2019, 92, 103668. [Google Scholar] [CrossRef]
- Li, X.X.; Koh, T.Y.; Panda, J.; Norford, L.K. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res. Atmos. 2016, 121, 4386–4440. [Google Scholar] [CrossRef] [Green Version]
- Alfraihat, R.; Mulugeta, G.; Gala, T. Ecological evaluation of urban heat island in Chicago City, USA. J. Atmos. Pollut. 2016, 4, 23–29. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Mishra, N.B. Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: A comparative analysis between India and Bangladesh. Appl. Geogr. 2016, 68, 68–83. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: A case study in the Midwestern United States. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef] [Green Version]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 127. [Google Scholar] [CrossRef] [Green Version]
- Sahana, M.; Ahmed, R.; Sajjad, H. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model. Earth Syst. Environ. 2016, 2, 81. [Google Scholar] [CrossRef] [Green Version]
- Zullo, F.; Fazio, G.; Romano, B.; Marucci, A.; Fiorini, L. Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): A study in the Po Valley (Italy). Sci. Total Environ. 2019, 650, 1740–1751. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur. J. Remote Sens. 2018, 51, 667–678. [Google Scholar] [CrossRef]
- Stroppiana, D.; Antoninetti, M.; Brivio, P.A. Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. Eur. J. Remote Sens. 2014, 47, 133–152. [Google Scholar] [CrossRef]
- Scarano, M.; Sobrino, J.A. On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. Int. J. Remote Sens. 2015, 36, 4820–4835. [Google Scholar] [CrossRef]
- Ding, H.; Shi, W. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. Int. J. Remote Sens. 2013, 34, 5503–5517. [Google Scholar] [CrossRef]
- Copernicus Project Database-Europe’s Eyes on Earth. Available online: https://www.copernicus.eu (accessed on 11 April 2020).
- EEA. CORINE Land Cover. 1995. Available online: http://www.eea.europa.eu/publications/COR0-landcover (accessed on 11 April 2020).
- EEA. Land Accounts for Europe 1990–2000: Towards Integrated Land and Ecosystem Accounting; European Environment Agency Report No. 11; Office for Official Publications of the European Communities: Luxembourg, 2006; ISBN 92-9167-888-0. [Google Scholar]
- SardegnaStatistiche—Popolazione e Famiglie—Popolazione (2007–2019). Available online: http://www.sardegnastatistiche.it/documenti/12_103_20191028124604.ods (accessed on 11 April 2020).
- Canu, S.; Rosati, L.; Fiori, M.; Motroni, A.; Filigheddu, R.; Farris, E. Bioclimate map of Sardinia (Italy). J. Maps 2015, 11, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Pungetti, G.; Marini, A.; Vogiatzakis, I. Sardinia. In Mediterranean Island Landscapes; Landscape Series; Vogiatzakis, I., Pungetti, G., Mannion, A.M., Eds.; Springer: Dordrecht, Germany, 2008; Volume 9, pp. 143–169. [Google Scholar] [CrossRef]
- Cardil, A.; Salis, M.; Spano, D.; Delogu, G.; MolinaTerrén, D. Large wildland fires and extreme temperatures in Sardinia (Italy). iForest 2014, 7, 162–169. [Google Scholar] [CrossRef] [Green Version]
- USGS. Science for a Changing World—EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 11 April 2020).
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines; Environment Agency Austria: Vienna, Austria, 2019. [Google Scholar]
- CLC. 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 11 April 2020).
- DTM Passo 10 Metri [DTM Sampling Rate 10]. Available online: http://webgis2.regione.sardegna.it/catalogodati/card.jsp?uuid=R_SARDEG:JDCBN (accessed on 11 April 2020).
- Ndossi, M.I.; Avdan, U. Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat: A PyQGIS Plugin. Remote Sens. 2016, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Barbierato, E.; Bernetti, I.; Capecchi, I.; Saragosa, C. Quantifying the impact of trees on land surface temperature: A downscaling algorithm at city-scale. Eur. J. Remote Sens. 2019, 52, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Alves, E.D.L. Seasonal and spatial variation of surface urban heat island intensity in a small urban agglomerate in Brazil. Climate 2016, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Dhar, R.B.; Chakraborty, S.; Chattopadhyay, R.; Sikdar, P.K. Impact of land-use/land-cover change on land surface temperature using satellite data: A case study of Rajarhat Block, North 24-Parganas District, West Bengal. J. Indian Soc. Remot. 2019, 47, 331–348. [Google Scholar] [CrossRef]
- USGS. Using the USGS Landsat Level-1 Data Product. Available online: https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 11 April 2020).
- Townshend, J.R.G.; Goff, T.E.; Tucker, C.J. Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Trans. Geosci. Remote 1985, GE-23, 888–895. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, Y. A C++ Program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Comput. Geosci. 2006, 32, 1796–1805. [Google Scholar] [CrossRef]
- van de Griend, A.A.; Owe, M. On the relationship between thermal emissivity and the normalized different vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- ArcGis Help. Resample. Available online: https://pro.arcgis.com/en/pro-app/tool-reference/data-management/resample.htm (accessed on 11 April 2020).
- EPSG 32632. Available online: https://epsg.io/32632 (accessed on 11 April 2020).
- Cheshire, P.; Sheppard, S. On the price of land and the value of amenities. Econ. New Ser. 1995, 62, 247–267. [Google Scholar] [CrossRef]
- Stewart, P.A.; Libby, L.W. Determinants of farmland value: The case of DeKalb County, Illinois. Rev. Agric. Econ. 1998, 80–95. [Google Scholar] [CrossRef]
- Sklenicka, P.; Molnarova, K.; Pixova, K.C.; Salek, M.E. Factors affecting farmlands in the Czech Republic. Land Use Policy 2013, 30, 130–136. [Google Scholar] [CrossRef]
- Zoppi, C.; Argiolas, M.; Lai, S. Factors influencing the value of houses: Estimates for the city of Cagliari, Italy. Land Use Policy 2015, 42, 367–380. [Google Scholar] [CrossRef]
- Bera, A.K.; Byron, R.P. Linearised estimation of nonlinear single equation functions. Int. Econ. Rev. 1983, 24, 237–248. [Google Scholar] [CrossRef]
- Wolman, A.L.; Couper, E. Potential consequences of linear approximation in economics. Fed. Reserve Bank Richmond Econ. Q. 2003, 89, 51–68. [Google Scholar]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Geneletti, D.; Cortinovis, C.; Zardo, L.; Blam Adel, E. Planning for Ecosystem Services in Cities; Springer: Dordrecht, Germany, 2019. [Google Scholar] [CrossRef] [Green Version]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Irmak, A. (Ed.) Remote Sensing and Modeling; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Launeau, P.; Giraud, M.; Ba, A.; Moussaoui, S.; Robin, M.; Debaine, F.; Lague, D.; Le Menn, E. Full-waveform LiDAR pixel analysis for low-growing vegetation mapping of coastal foredunes in Western France. Remote Sens. 2018, 10, 669. [Google Scholar] [CrossRef] [Green Version]
- Ge, J. MODIS observed impacts of intensive agriculture on surface temperature in the southern Great Plains. Int. J. Climatol. 2010, 30, 1994–2003. [Google Scholar] [CrossRef]
- Youneszadeh, S.; Amiri, N.; Pilesjo, P. The effect of land use change on land surface temperature in the Netherlands. In Proceedings of the International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 23–25 November 2015; Volume 41, pp. 745–748. [Google Scholar]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Walawender, J.P.; Szymanowski, M.; Hajto, M.J.; Bokwa, A. Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ Data. Pure Appl. Geophys. 2014, 171, 913–940. [Google Scholar] [CrossRef] [Green Version]
- Feldhake, C.M.; Glenn, D.M.; Peterson, D.L. Pasture soil surface temperature response to drought. Agron. J. 1996, 88, 652–656. [Google Scholar] [CrossRef]
- Mokhtari, A.; Mansor, S.B.; Mahmud, A.R.; Helmi, Z.M. Monitoring the impacts of drought on land use/cover: A developed object-based algorithm for NOAA AVHRR time series data. J. Appl. Sci. 2011, 11, 3089–3103. [Google Scholar] [CrossRef]
- Sruthi, S.; Aslam, M.A.M. Agricultural drought analysis using the NDVI and land surface temperature data: A case study of Raichur District. Aquat. Proc. 2015, 4, 1258–1264. [Google Scholar] [CrossRef]
- Dodo, M.K. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change. SpringerPlus 2014, 3, 194. [Google Scholar] [CrossRef] [Green Version]
- Kaniewski, D.; Marriner, N.; Cheddadi, R.; Fischer, P.M.; Otto, T.; Luce, F.; Van Campo, E. Climate change and social unrest: A 6000-year chronicle from the eastern Mediterranean. Geophys. Res. Lett. 2020, 47, 7. [Google Scholar] [CrossRef]
- Centro Studi di Confagricoltura [Study Center of the Italian Confederation of Agriculture]. L’agricoltura Nelle Regioni d’Italia—2015—Sardegna [The Agriculture in the Italian Regions—2015—Sardinia]. Available online: http://www.confagricoltura.it/DownLoadFileUrl.php/url=backend@@comunicazioni@@file_upload@@allegato@@1701171100150_20_sardegna.pdf/nomefile=20_sardegna.pdf (accessed on 11 April 2020).
- Mayor of London. London’s Urban Heat Island: A Summary for Decision Makers; Greater London Authority, City Hall: London, UK, 2006. [Google Scholar]
- Nguyen, T.T.; Bauer, S.; Uibrig, H. Land privatization and afforestation incentive of rural farms in the Northern Uplands of Vietnam. For. Policy Econ. 2010, 12, 518–526. [Google Scholar] [CrossRef]
- Pötz, H.; Sjauw En Wa-Windhorst, A.; van Someren, H. Urban Green-Blue Grids Manual for Resilient Cities; Atelier Groenblauw: Delft, The Netherlands, 2016. [Google Scholar]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Mathey, J.; Rößler, S.; Lehmann, I.; Bräuer, A. Urban green spaces: Potentials and constraints for urban adaptation to climate change. In Resilient Cities. Cities and Adaptation to Climate Change. Proceedings of the Global Forum 2010, Munich, Germany, 19–20 May 2010; Otto-Zimmermann, K., Ed.; Springer: Dordrecht, Germany, 2011; Volume 1, pp. 479–485. [Google Scholar] [CrossRef]
- Jenning, V.; Larson, L.; Yun, J. Advancing sustainability through urban green space: Cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, C. The new institutional economics and the evolution of modern urban planning: Insights, issues and lessons. Town Plan. Rev. 2005, 76, 455–502. [Google Scholar] [CrossRef]
- Bramley, G.; Watkins, D.G. ‘Measure twice, cut once’—Revisiting the strength and impact of local planning regulation of housing development in England. Environ. Plan. B 2014, 41, 863–884. [Google Scholar] [CrossRef]
- Buijs, A.; Hansen, R.; Van der Jagt, S.; Ambrose-Oji, B.; Elands, B.; Lorance Rall, E.; Mattijssen, T.; Pauleit, S.; Runhaar, H.; Stahl Olafsson, A.; et al. Mosaic governance for urban green infrastructure: Upscaling active citizenship from a local government perspective. Urban For. Urban Green. 2019, 40, 53–62. [Google Scholar] [CrossRef]
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing green infrastructure in spatial planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Fors, H.; Frøik Molin, J.; Murphy, M.A.; Konijnendijk van den Boschab, C. User participation in urban green spaces—For the people or the parks? Urban For. Urban Green. 2015, 14, 722–734. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Urrestarazu, L.; Fernández-Cañero, R.; Franco-Salas, A.; Egea, G. Vertical greening systems and sustainable cities. J. Urban Technol. 2015, 22, 65–85. [Google Scholar] [CrossRef]
- Wall, S. Small-scale Forestry and Rural Development: The Intersection of Ecosystems, Economics and Society. Proceedings of IUFRO 3.08 Conference Hosted by Galway-Mayo Institute of Technology, Galway, Ireland, 3–6 July 2006; COFORD: Dublin, Irish, 2006. [Google Scholar]
- Ryan, M.; O’Donoghue, C. Socio-economic drivers of farm afforestation decision-making. Ir. For. J. 2016, 73, 96–121. [Google Scholar]
- Howley, P.; Buckley, C.; O’Donoghue, C.; Ryan, M. Explaining the economic “irrationality” of farmers’ land use behaviour: The role of productivist attitudes and non-pecuniary benefits. Ecol. Econ. 2015, 109, 186–193. [Google Scholar] [CrossRef]
- Duesberg, S.; Ní Dhubháin, A.; O’Connor, D. Assessing policy tools for encouraging farm afforestation in Ireland. Land Use Policy 2014, 38, 194–203. [Google Scholar] [CrossRef]
- Kumm, K.I.; Hessle, A. Economic comparison between pasture-based beef production and afforestation of abandoned land in Swedish forest districts. Land 2020, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Hyytiainen, K.; Leppanen, J.; Pahkasalo, T. Economic analysis of field afforestation and forest clearance for cultivation in Finland. In Proceedings of the International Congress of European Association of Agricultural Economists, Ghent, Belgium, 26–29 August 2008. [Google Scholar]
- Behan, J.; McQuinn, K.; Roche, M.J. Rural land use: Traditional agriculture or forestry? Land Econ. 2006, 82, 112–123. [Google Scholar] [CrossRef]
- Zavalloni, M.; D’Alberto, R.; Raggi, M.; Viaggi, D. Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy 2019, in press. [Google Scholar] [CrossRef]
- Brouwer, R.; Lienhoop, N.; Oosterhuis, F. Incentivizing afforestation agreements: Institutional-economic conditions and motivational drivers. J. For. Econ. 2015, 21, 205–222. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Weng, Q.; Weaver, R. A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon. Remote Sens. 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sens. 2016. [Google Scholar] [CrossRef] [Green Version]
Image Code | Date | Scene |
---|---|---|
LC08_L1TP_193031_20190523_20190604_01_T2 | 23 May 2019 | 193 |
LC08_L1TP_193032_20190523_20190604_01_T1 | 23 May 2019 | 193 |
LC08_L1TP_193033_20190523_20190604_01_T1 | 23 May 2019 | 193 |
LC08_L1TP_192032_20190516_20190521_01_T2 | 16 May 2019 | 192 |
LC08_L1TP_192033_20190516_20190521_01_T1 | 16 May 2019 | 192 |
LEAC Groups | CORINE Land Cover Classes 1 | ||||
---|---|---|---|---|---|
URB | Artificial (urbanized) areas | 1.* | |||
APC | Arable and permanent crops | 2.1.* | 2.2.* | 2.4.1 | |
MCP | Mosaic crops and pastures | 2.3.* | 2.4.2 | 2.4.3 | 2.4.4 |
FSW | Forests, shrubs, and woodlands | 3.1.* | 3.2.4 | ||
HNGS | Heathland, natural grasslands, and sclerophyllous vegetation | 3.2.1 | 3.2.2 | 3.2.3 | |
OPSP | Open spaces with sparse or absent vegetation | 3.3.* | |||
WAT | Water bodies and wetlands | 4.* | 5.* (except 523-sea) |
Explanatory Variable | Coefficient | Standard Deviation | t-Statistic | p-Value | Mean of the Explanatory Variable |
---|---|---|---|---|---|
URB | 8.918 | 0.0531 | 167.991 | 0.000 | 0.032 |
APC | 8.515 | 0.0460 | 185.274 | 0.000 | 0.269 |
MCP | 7.413 | 0.0465 | 159.529 | 0.000 | 0.228 |
FSW | 4.786 | 0.0476 | 100.556 | 0.000 | 0.150 |
HNGS | 6.272 | 0.0463 | 135.428 | 0.000 | 0.293 |
OPSP | 7.349 | 0.0602 | 122.113 | 0.000 | 0.017 |
ALTIT | −0.00638 | −0.0000218 | −292.404 | 0.000 | 317.248 |
LATD | −0.0000157 | −0.0000000781 | −200.735 | 0.000 | 4,438,355.893 |
W | 4.311 | 0.0242 | 178.260 | 0.000 | 0.951 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.; Leone, F.; Zoppi, C. Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy. Sustainability 2020, 12, 3186. https://doi.org/10.3390/su12083186
Lai S, Leone F, Zoppi C. Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy. Sustainability. 2020; 12(8):3186. https://doi.org/10.3390/su12083186
Chicago/Turabian StyleLai, Sabrina, Federica Leone, and Corrado Zoppi. 2020. "Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy" Sustainability 12, no. 8: 3186. https://doi.org/10.3390/su12083186
APA StyleLai, S., Leone, F., & Zoppi, C. (2020). Spatial Distribution of Surface Temperature and Land Cover: A Study Concerning Sardinia, Italy. Sustainability, 12(8), 3186. https://doi.org/10.3390/su12083186