Design Concept for a Greened Timber Truss Bridge in City Area
Abstract
:1. Introduction
- Most efficient use of material through optimized structural design;
- Efficient and economic production process;
- Best possible functionality in use as bridge and communal area;
- Good integration into the surroundings;
- Greening the structure.
2. State of the Art
2.1. Comparison of Two Traditional Wooden Bridges
2.1.1. Rosannabrücke
2.1.2. Gosauzwangbrücke
2.2. Design and Production of Timber Truss Systems
2.3. Greening Building Structures
3. Boundary Conditions
4. Conceptual Design
4.1. Design Concept
4.2. Location and Fuction
4.3. Structural Design
4.4. Material and Facilities
4.5. Digital Design, Optimization, and Automated Prefabrication Concept
4.6. Greening Concept
- (1)
- How can the requirements for plant attachment and guides be fulfilled for the options (a), (b), and (c)?
- (2)
- How can they be integrated in the truss design?
- (3)
- How can the timber–plant interaction be characterized?
- (4)
- Is wetting emerging and resulting from leaf attachment and climbing organs?
- (5)
- Does surface plant contact cause serious impact to the timber and the stability performance?
- (6)
- Can the long-term plant habitats be assessed and modeled regarding aesthetic integration, material protection, and microclimatic benefits?
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lutz, W.; Sanderson, W.; Scherbov, S. The end of world population growth. Nature 2001, 412, 543–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Wide Fund for Nature. WWF Living Forests Report: Chapter 1-Forets for a Living Planet; WWF: Gland, Switzerland, 2012; ISBN 978-2-940443-32-1. [Google Scholar]
- World Wide Fund for Nature. WWF Living Forests Report: Chapter 4-Forests an Wood Products; WWF: Gland, Switzerland, 2012; ISBN 987-2-940443-32-1. [Google Scholar]
- Moreno, E.L. Urbanization and Development: Emerging Futures: World Cities Report 2016; UN Habitat: Nairobi, Kenya, 2016. [Google Scholar]
- Rosenzweig, C.; Solecki, W.; Hammer, S.A.; Mehrotra, S. Cities lead the way in climate–change action. Nature 2010, 467, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Vox, G.; Blanco, I.; Schettini, E. Green façades to control wall surface temperature in buildings. Build. Environ. 2018, 129, 154–166. [Google Scholar] [CrossRef]
- Weixelbaumer, V.; Zluwa, I.; Weihs, P. Roof shelter environment: An experimental study about increasing thermal comfort on a rooftop terrace by combining photovoltaic energy production and greenroofs. In Hildegard Gremmel-Simon, Proceedings of the Gebäude der Zukunft? vernetzt-digital-ökosozial, Pinkafeld, Austria, 22–23 November 2018; Leykam, Buchverlagsgesellschaft, m.b.H: Pinkafeld, Austria, 2018. [Google Scholar]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater runoff retention on an aged intensive green roof. Sci. Total Environ. 2013, 461, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Todorov, D.; Driscoll, C.T.; Todorova, S. Long-term and seasonal hydrologic performance of an extensive green roof. Hydrol. Process. 2018, 32, 2471–2482. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Jesionek, K.; Bruse, M. Impacts of vegetation on the microclimate: modeling standardized building structures with different greening levels. In Proceedings of the Fifth Int. Conf. on Urban Climate, Lodz, Poland, 1–5 September 2003; pp. 1–5. [Google Scholar]
- Elsadek, M.; Liu, B.; Lian, Z. Green façades: Their contribution to stress recovery and well-being in high-density cities. Urban For. Urban Green. 2019, 46, 126446. [Google Scholar] [CrossRef]
- Başdoğan, G.; Çığ, A. Ecological-Social-Economical Impacts of Vertical Gardens in the Sustainable City Model. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2016, 26, 430–438. [Google Scholar]
- Yan, H.; Wang, X.; Hao, P.; Dong, L. Study on the microclimatic characteristics and human comfort of park plant communities in summer. Procedia Environ. Sci. 2012, 13, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Mitterer, S. Dokumentation Strengen Rosannabrücke, 2015.
- Seifert, A. Im Zeitalter des Lebendigen, S. 138; Müllersche Verlagshandlung: Munich, Germany, 1943. [Google Scholar]
- Hofkammerarchiv Wien Camerale, Fasz. 8, rot 248, 120 ex junio. 1972.
- Idam, F. 13.000 Rohre für den Soletransport. Industrie-kultur, April 2009; 16–17. [Google Scholar]
- Hofkammerarchiv Wien. Plan Sig. H-112 aus der Handschrift Nr. 627, Relation ü.d. 1781 Skgt. Visitation d. Hofschreiberamtes und Marktbericht Hallstatt; Hofkammerarchiv Wien: Wien, Austria, 1781. [Google Scholar]
- Schraml, C. Das oberösterreichische Salinenwesen von 1750 bis zur Zeit nach den Franzosenkriegen; Wien Government: Wien, Austria, 1934; p. 123.
- Fellner, A. Bergmännisches Handwörterbuch für Fachausdrücke im Salzbergbau-und Sudhüttenwesen; Wien Government: Wien, Austria, 1999.
- Kommunal. Wanderweg und Sole-Pipeline; Österreichischer Kommunalverlag, Wien ISSN: 1605-1440, issue 09/17, 2017. Available online: https://gemeindebund.at/website2016/wp-content/uploads/2017/10/kommunal_9-2017.pdf (accessed on 2 February 2020).
- Zubizarreta, M.; Cuadrado, J.; Orbe, A.; García, H. Modeling the environmental sustainability of timber structures: A case study. Environ. Impact Assess. Rev. 2019, 78, 106286. [Google Scholar] [CrossRef]
- Magistrat der Stadt Wien; Wiener Umweltschutzabteilung MA22. Urban Heat Islands–Strategieplan Wien; Wiener Umweltschutzabteilung: Wien, Austria, 2015.
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. COM; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- United States Environmental Protection Agency. Greening EPA. Available online: https://www.epa.gov/greeningepa (accessed on 20 February 2020).
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, F.; Qian, F.; Zhuang, Z.; Yao, J. Summertime thermal and energy performance of a double-skin green facade: A case study in Shanghai. Sustain. Cities Soc. 2018, 39, 43–51. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.G.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Scharf, B.; Kraus, F. Green roofs and greenpass. Buildings 2019, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Medl, A.; Stangl, R.; Florineth, F. Vertical greening systems–a review on recent technologies and research advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar] [CrossRef]
- Radić, M.; Dodig, M.B.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- University of Natural Resources and Life Sciences BOKU-Daten und Fakten 2018. Available online: https://boku.ac.at/fileadmin/data/Zielgruppen/ZahlenDatenFakten.pdf (accessed on 2 February 2020).
- University of Natural Resources and Life Sciences BOKU. Available online: https://boku.ac.at/ (accessed on 2 February 2020).
- Unviversity of Natural Resources and Life Sciences BOKU-site map location Türkenschanze. Available online: https://boku.ac.at/fileadmin/data/H05000/H12000/Baum_2012/B-_International_Students_coming_to_BOKU/I-_Wie_plane_ich_mein_Studium_an_der_BOKU/3_Map_Tuerkenschanze.pdf. (accessed on 2 February 2020).
- Bundesimmobiliengesellschaft, m.b.H. Detail-Bundesimmobiliengesellschaft. Available online: https://www.big.at/projekte/tuewi-boku-wien/ (accessed on 2 February 2020).
- Bodig, J.; Jayne, B.A. Mechanics of Wood and wood Composites; Van Nostrand Reinhold: New York, NY, USA, 1982; ISBN 978-0-442-00822-2. [Google Scholar]
- Möller, E. Tendenzen im Holzbau. Bautechnik 2013, 90, 42–46. [Google Scholar] [CrossRef]
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-8138-2074-3. [Google Scholar]
- Helm, V.; Willmann, J.; Gramazio, F.; Kohler, M. In-situ robotic fabrication: Advanced digital manufacturing beyond the laboratory. In Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe; Röhrbein, F., Veiga, G., Natale, C., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 63–83. [Google Scholar]
- Søndergaard, A.; Amir, O.; Eversmann, P.; Piskorec, L.; Stan, F.; Gramazio, F.; Kohler, M. Topology optimization and robotic fabrication of advanced timber space-frame structures. In Proceedings of the Robotic Fabrication in Architecture, Art and Design, Sydney, Australia, 18–19 March 2016; pp. 190–203. [Google Scholar]
- Willmann, J.; Knauss, M.; Bonwetsch, T.; Apolinarska, A.A.; Gramazio, F.; Kohler, M. Robotic timber construction—Expanding additive fabrication to new dimensions. Autom. Constr. 2016, 61, 16–23. [Google Scholar] [CrossRef]
- Thoma, A.; Adel, A.; Helmreich, M.; Wehrle, T.; Gramazio, F.; Kohler, M. Robotic fabrication of bespoke timber frame modules. In Proceedings of the Robotic Fabrication in Architecture, Art and Design 2018, Zurich, Switzerland, 10–15 September 2018; Springer: Cham, Switzerland, 2018; pp. 447–458. [Google Scholar]
- Weinand, Y. Neue Wege für Holztragwerke. Das Forschungslabor IBOIS an der EPF Lausanne; Birkhäuser GmbH: Basel, Switzerland, 2011. [Google Scholar]
- Robeller, C.; Gamerro, J.; Weinand, Y. Théâtre vidy lausanne–a double-layered timber folded plate structure. J. Int. Assoc. Shell Spat. Struct. 2017, 58, 295–314. [Google Scholar] [CrossRef]
- Hensel, M.; Menges, A.; Weinstock, M. Emergent Technologies and Design: Towards a Biological Paradigm for Architecture; Routledge: Abingdon, UK, 2013; ISBN 978-1-315-88129-4. [Google Scholar]
- Krieg, O.D.; Menges, A. Neue Dimensionen-Computerbasierter Holzbau vom Entwurf bis zur Fertigung. In Proceedings of the Holz_Haus_Tage 2014, Bad Ischl, Austria, 2 October 2014. [Google Scholar]
- Menges, A.; Schwinn, T.; Krieg, O.D. Advancing Wood Architecture: A Computational Approach; Routledge: Abingdon, UK, 2016; ISBN 978-1-317-39234-7. [Google Scholar]
- Kromoser, B.; Braun, M. Towards efficiency in constructive timber engineering-design and optimization of timber trusses. In Proceedings of the IABSE Congress 2019, New York, NY, USA, 4–6 September 2019. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kromoser, B.; Ritt, M.; Spitzer, A.; Stangl, R.; Idam, F. Design Concept for a Greened Timber Truss Bridge in City Area. Sustainability 2020, 12, 3218. https://doi.org/10.3390/su12083218
Kromoser B, Ritt M, Spitzer A, Stangl R, Idam F. Design Concept for a Greened Timber Truss Bridge in City Area. Sustainability. 2020; 12(8):3218. https://doi.org/10.3390/su12083218
Chicago/Turabian StyleKromoser, Benjamin, Martin Ritt, Alexandra Spitzer, Rosemarie Stangl, and Friedrich Idam. 2020. "Design Concept for a Greened Timber Truss Bridge in City Area" Sustainability 12, no. 8: 3218. https://doi.org/10.3390/su12083218
APA StyleKromoser, B., Ritt, M., Spitzer, A., Stangl, R., & Idam, F. (2020). Design Concept for a Greened Timber Truss Bridge in City Area. Sustainability, 12(8), 3218. https://doi.org/10.3390/su12083218