Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia
Abstract
:1. Introduction
2. Model Description and Simulation Settings
3. Results and Discussion
3.1. Dust Aerosol Emission Verification
3.2. Simulations and Analyses of the Characteristics of Dust Aerosols with Different Particle Sizes in East Asia
3.2.1. Concentration Distribution of Dust Aerosols with Different Particle Sizes
3.2.2. Vertical Distributions of Dust Aerosols with Different Particle Sizes
3.3. Sensitivity Analysis on the Contribution of Plateau Desertification to Dust Aerosols in East Asia
3.3.1. Variation of Dust Aerosol Concentration in East Asia
3.3.2. Vertical Contributions of Dust Aerosols with Different Particle Sizes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charlson, R.J.; Heintzenberg, J. Aerosol Forcing of Climate; John Wiley & Sons: Chichester, UK, 1995. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Linder, P.J.v.d.; Dai, X.; Mashell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Zender, C.S.; Miller, R.L.R.L.; Tegen, I. Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates. Eos Trans. Am. Geophys. Union 2004, 85, 509–512. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western US. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, K.S.; Boucher, O.; Spracklen, D.V.; Mann, G.W.; Rae, J.G.L.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef] [Green Version]
- Heikenfeld, M.; White, B.; Labbouz, L.; Stier, P. Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys. 2019, 19, 2601–2627. [Google Scholar] [CrossRef] [Green Version]
- Samset, B.H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R.C.; et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys. 2013, 13, 2423–2434. [Google Scholar] [CrossRef] [Green Version]
- Marinescu, P.J.; Heever, S.C.v.d.; Saleeby, S.M.; Kreidenweis, S.M.; DeMott, P.J. The Microphysical Roles of Lower-Tropospheric versus Midtropospheric Aerosol Particles in Mature-Stage MCS Precipitation. J. Atmos. Sci. 2017, 74, 3657–3678. [Google Scholar] [CrossRef]
- Zheng, D.; Yao, T.D. Uplifting of Tibetan Plateau with its environmental effects. Adv. Earth Sci. 2006, 21, 451–458. [Google Scholar]
- Xu, X.D.; Lu, C.S.; Shi, X.H.; Gao, S.T. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35, 525–530. [Google Scholar] [CrossRef]
- Wu, G.X.; Liu, Y.M.; He, B.; Bao, Q.; Duan, A.M.; Jin, F.F. Thermal controls on the Asian summer monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.B.; Qu, J.J.; Zu, R.P.; Zhang, K.C.; Han, Q.J. New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plareau. Chin. Sci. Bull. 2012, 57, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gao, S.Y.; Yang, P.; Chen, H.S. Some problems of freeze-thaw desertification in the Tibetan Plateau: A case study on the desertification regions of the Western and Northern Platean. J. Glaciol. Geocryol. 2005, 4, 476–485. [Google Scholar]
- Liu, Z.; Liu, D.; Huang, J.; Vaughan, M.; Uno, I.; Sugimoto, N.; Kittaka, C.; Trepte, C.; Wang, Z.; Hostetler, C.; et al. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys. 2008, 8, 5045–5060. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Liu, Z.; Ayers, K.; Trepte, C.; Winker, D. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Eckermann, S. Hybrid σ–P Coordinate Choices for a Global Model. Mon. Weather Rev. 2009, 137, 224–245. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.L.; Shen, Z.X.; Mei, F.M.; Xi, X.X.; Liu, L.C.; Zhou, Z.J.; Wang, D.; Wang, Y.Q.; Cheng, Y. Characterization of soil dust aerosol in China and its transport /distribution during 2001 ACE-Asia: 2. Model Simulation and Validation. J. Geophys. Res. 2003, 108, 4262. [Google Scholar] [CrossRef]
- Gong, S.L.; Barrie, L.A.; Blanchet, J.P.; Von Salzen, K.; Lohmann, U.; Lesins, G.; Spacek, L.; Zhang, L.M.; Girard, E.; Lin, H. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models: 1.Module development. J. Geophys. Res. 2003, 108, 4007. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L.; Barrie, L.A.; Lazare, M. Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models: 2. Globalsea-salt aerosol and its budgets. J. Geophys. Res. 2002, 107, 4779. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by winderosion: Emission intensities and aerosol size distribution in source areas. J. Geophys. Res. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle:1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G.; Aumont, B.; Callot, Y.; N’Doumé, C.; Legrand, M. Modeling the atmosphericdust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Robert, A.; Yee, T.L.; Ritchie, H. A semi-Lagrangian and semiimplicit numerical integration scheme for multilevel atmospheric models.Mon. Weather Rev. 1985, 133, 388–394. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Ding, Y.H. Monsoons over China. Atmos. Sci. Libr. 1994, 2, 432. [Google Scholar] [CrossRef]
- Duan, A.; Wang, M.; Lei, Y.; Cui, Y. Trends in summer rainfall over China associated with the Tibetan Plateau Sensible Heat source during 1980–2008. J. Clim. 2013, 26, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; He, C.; Wan, Q.L. The thermal effect of the Tibetan Plateau on the summer climate of the south China sea surrounding areas. J. Trop. Meteorol. 2019, 35, 268–280. [Google Scholar]
- Zhao, T.L.; Gong, S.L.; Zhang, X.Y.; Blanchet, J.P.; McKendry, I.G.; Zhou, Z.J. A simulated climatology of Asian dust aerosol and its trans-pacific transport. Part Ⅰ: Mean climate and validation. J. Clim. 2006, 19, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Kim, K.M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 2006, 33, L21810. [Google Scholar] [CrossRef]
- Werner, M.; Tegen, I.; Harrison, S.P.; Kohfeld, K.E.; Prentice, I.C.; Balkanski, Y.; Rodhe, H.; Roelandt, C. Seasonal and inter annual variability of the mineral dust cycle under present and glacial climate conditions. J. Geophys. Res. 2002, 107, 4744. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Luo, C.; Mahowald, N.M.; Corral, J.d. Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res. 2003, 108, 4447. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Tegen, I.; Perlwitz, J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res. 2004, 109, 4203. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. A numerical study of the contributions of dust source region to the global dust budget. Glob. Planet. Chang. 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Colette, A.; Menut, L.; Haeffelin, M.; Morille, Y. Impact of the transport of aerosols from the freetroposphere towards the boundary layer on the air quality in the Paris area. Atmospheric Environ. 2008, 42, 390–402. [Google Scholar] [CrossRef]
- HTAP. Hemispheric Transport of Air Pollution 2010; United Nations: New York, NY, USA; Geneva, Switzerland, 2010. [Google Scholar]
- Liu, D.; Taylor, J.W.; Crosier, J.; Marsden, N.; Bower, K.N.; Lloyd, G.; Ryder, C.L.; Brooke, J.K.; Cotton, R.; Marenco, F.; et al. Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D. Atmos. Chem. Phys. 2017, 18, 1–32. [Google Scholar] [CrossRef] [Green Version]
Size Bin Number | Diameter Ranges, μm |
---|---|
01 | 0.01–0.02 |
02 | 0.02–0.04 |
03 | 0.04–0.08 |
04 | 0.08–0.16 |
05 | 0.16–0.32 |
06 | 0.32–0.64 |
07 | 0.64–1.28 |
08 | 1.28–2.56 |
09 | 2.56–5.12 |
10 | 5.12–10.24 |
11 | 10.24–20.48 |
12 | 20.48–40.96 |
Dust Aerosol Emission /Mt | Resources | |||||
---|---|---|---|---|---|---|
North Africa | Arabian Peninsula | Central Asia | East Asia | Australian | Global | |
1095(71%) | 202(7.4%) | 69(4.5%) | 79(5.1%) | 57(3.7%) | 1538 | This study |
693(65%) | 101(9.5%) | 96(9.0%) | 52(4.9%) | 1060 | Werner et al., 2002 [32] | |
980(66%) | 415(28%) | 37(2.5%) | 1490 | Zender et al., 2004 [3] | ||
1430(69%) | 496(24%) | 61(2.9%) | 2073 | Ginoux et al., 2001 [33] | ||
1114(67%) | 119(7.2%) | 54(3.2%) | 132(8.0%) | 1654 | Luo et al., 2003 [34] | |
517(51%) | 43(4.2%) | 163(16%) | 50(4.9%) | 148(15%) | 1019 | Miller et al., 2004 [35] |
1087(58%) | 221(11.8%) | 140(7.5%) | 214(11.4%) | 106(5.7%) | 1887 | Tanaka et al., 2006 [36] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Zhao, T.; Bai, Y.; Liu, Y.; Han, Y. Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia. Sustainability 2020, 12, 3231. https://doi.org/10.3390/su12083231
Xiong J, Zhao T, Bai Y, Liu Y, Han Y. Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia. Sustainability. 2020; 12(8):3231. https://doi.org/10.3390/su12083231
Chicago/Turabian StyleXiong, Jie, Tianliang Zhao, Yongqing Bai, Yu Liu, and Yongxiang Han. 2020. "Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia" Sustainability 12, no. 8: 3231. https://doi.org/10.3390/su12083231
APA StyleXiong, J., Zhao, T., Bai, Y., Liu, Y., & Han, Y. (2020). Simulation and Analyses of the Potential Impacts of Different Particle-Size Dust Aerosols Caused by the Qinghai-Tibet Plateau Desertification on East Asia. Sustainability, 12(8), 3231. https://doi.org/10.3390/su12083231