Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Sampling Design
2.3. Site Conditions
2.4. Grassland Management
2.5. Species Data
2.6. Data Analysis
3. Results
3.1. Effect of Grazing System on Species Richness and Vegetation Characteristics (H1)
3.2. Relationship between Vegetation Characteristics and Species Richness (H2)
3.3. Effect of Grazing System on Floristic Contrast (H3)
3.4. Effect of Grassland Management on Species Richness (H4)
4. Discussion
4.1. Effect of Grazing System
4.2. Relationship of Vegetation Characteristics and Species Richness
4.3. Relationship of Floristic Contrast and Species Richness
4.4. Effects of Grassland Management on Species Richness
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wrage, N.; Strodthoff, J.; Cuchillo, H.M.; Isselstein, J.; Kayser, M. Phytodiversity of temperate permanent grasslands: Ecosystem services for agriculture and livestock management for diversity conservation. Biodivers. Conserv. 2011, 20, 3317–3339. [Google Scholar] [CrossRef] [Green Version]
- Olff, H.; Ritchie, M.E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 1998, 13, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching type of livestock to desired biodiversity outcomes in pastures—A review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Tälle, M.; Deák, B.; Poschlod, P.; Valkó, O.; Westerberg, L.; Milberg, P. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agric. Ecosyst. Environ. 2016, 222, 200–212. [Google Scholar] [CrossRef]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.; Rossignol, N.; Loucougaray, G.; Carrère, P.; Chadoeuf, J.; Fleurance, G.; Bonis, A.; Farruggia, A.; Gaucherand, S.; Ginane, C.; et al. When does grazing generate stable vegetation patterns in temperate pastures? Agric. Ecosyst. Environ. 2012, 153, 50–56. [Google Scholar] [CrossRef]
- Tonn, B.; Raab, C.; Isselstein, J. Sward patterns created by patch grazing are stable over more than a decade. Grass Forage Sci. 2019, 74, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Marion, B.; Bonis, A.; Bouzillé, J.-B. How much does grazing-induced heterogeneity impact plant diversity in wet grasslands? Écoscience 2010, 17, 229–239. [Google Scholar] [CrossRef]
- Scimone, M.; Rook, A.J.; Garel, J.P.; Sahin, N. Effects of livestock breed and grazing intensity on grazing systems: 3. Effects on diversity of vegetation. Grass Forage Sci. 2007, 62, 172–184. [Google Scholar] [CrossRef]
- Klimek, S.; Marini, L.; Hofmann, M.; Isselstein, J. Additive partitioning of plant diversity with respect to grassland management regime, fertilisation and abiotic factors. Basic Appl. Ecol. 2008, 9, 626–634. [Google Scholar] [CrossRef]
- Hautier, Y.; Isbell, F.; Borer, E.T.; Seabloom, E.W.; Harpole, W.S.; Lind, E.M.; MacDougall, A.S.; Stevens, C.J.; Adler, P.B.; Alberti, J.; et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Jerrentrup, J.S.; Seither, M.; Petersen, U.; Isselstein, J. Little grazer species effect on the vegetation in a rotational grazing system. Agric. Ecosyst. Environ. 2015, 202, 243–250. [Google Scholar] [CrossRef]
- European Horse Network—Environmental and Rural Impact. Available online: http://www.europeanhorsenetwork.eu/horse-industry/environmental-and-rural-impact/ (accessed on 30 December 2019).
- Schmitz, A.; Isselstein, J. Wieviel Grünland wird in Deutschland für Pferde genutzt? Berichte Über Landwirtsch. Z. Für Agrarpolit. Landwirtsch. 2018, 96, 1–32. [Google Scholar]
- Bomans, K.; Dewaelheyns, V.; Gulinck, H. Pasture for horses: An underestimated land use class in an urbanized and multifunctional area. Int. J. Sustain. Dev. Plan. 2011, 6, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Elgåker, H.; Pinzke, S.; Lindholm, G.; Nilsson, C. Horse keeping in Urban and Peri-Urban Areas: New Conditions for Physical Planning in Sweden. Geogr. Tidsskr.-Dan. J. Geogr. 2010, 110, 81–98. [Google Scholar] [CrossRef]
- Zasada, I.; Berges, R.; Hilgendorf, J.; Piorr, A. Horsekeeping and the peri-urban development in the Berlin Metropolitan Region. J. Land Use Sci. 2013, 8, 199–214. [Google Scholar] [CrossRef]
- Jouven, M.; Vial, C.; Fleurance, G. Horses and rangelands: Perspectives in Europe based on a French case study. Grass Forage Sci. 2016, 71, 178–194. [Google Scholar] [CrossRef]
- Bott, R.C.; Greene, E.A.; Koch, K.; Martinson, K.L.; Siciliano, P.D.; Williams, C.; Trottier, N.L.; Burk, A.; Swinker, A. Production and Environmental Implications of Equine Grazing. J. Equine Vet. Sci. 2013, 33, 1031–1043. [Google Scholar] [CrossRef]
- Watts, K. Pasture Management to Minimize the Risk of Equine Laminitis. Vet. Clin. North Am. Equine Pract. 2010, 26, 361–369. [Google Scholar] [CrossRef]
- Williams, C.A.; Kenny, L.B.; Burk, A.O. Effects of grazing system and season on glucose and insulin dynamics of the grazing horse. J. Equine Vet. Sci. 2017, 52, 87. [Google Scholar] [CrossRef]
- Archer, M. The species preferences of grazing. Grass Forage Sci. 1973, 28, 123–128. [Google Scholar] [CrossRef]
- Hongo, A.; Akimoto, M. The role of incisors in selective grazing by cattle and horses. J. Agric. Sci. 2003, 140, 469–477. [Google Scholar] [CrossRef]
- Singer, J.W.; Bobsin, N.; Kluchinski, D.; Bamka, W.J. Equine stocking density effect on soil chemical properties, botanical composition, and species density. Commun. Soil Sci. Plant Anal. 2001, 32, 2549–2559. [Google Scholar] [CrossRef]
- Fleurance, G.; Farruggia, A.; Lanore, L.; Dumont, B. How does stocking rate influence horse behaviour, performances and pasture biodiversity in mesophile grasslands? Agric. Ecosyst. Environ. 2016, 231, 255–263. [Google Scholar] [CrossRef]
- Nolte, S.; Esselink, P.; Smit, C.; Bakker, J.P. Herbivore species and density affect vegetation-structure patchiness in salt marshes. Agric. Ecosyst. Environ. 2014, 185, 41–47. [Google Scholar] [CrossRef]
- Schmitz, A.; Isselstein, J. Effects of management on vegetation structure in horse pastures. In Proceedings of the 17th Symposium of the European Grassland Federation. The Role of Grasslands in a Green Future: Threats and Perspectives in Less Favoured Areas; Helgadóttir, Á., Hopkins, A., Eds.; Agricultural University of Iceland: Borgarnes, Iceland, 2013; pp. 394–396. [Google Scholar]
- Ceulemans, T.; Merckx, R.; Hens, M.; Honnay, O. A trait-based analysis of the role of phosphorus vs. nitrogen enrichment in plant species loss across North-west European grasslands: Trait-based analysis of the role of P vs. N enrichment. J. Appl. Ecol. 2011, 48, 1155–1163. [Google Scholar] [CrossRef]
- Critchley, C.N.R.; Chambers, B.J.; Fowbert, J.A.; Sanderson, R.A.; Bhogal, A.; Rose, S.C. Association between lowland grassland plant communities and soil properties. Biol. Conserv. 2002, 105, 199–215. [Google Scholar] [CrossRef]
- Ödberg, F.O.; Francis-Smith, K. Studies on the formation of ungrazed eliminative areas in fields used by horses. Appl. Anim. Ethol. 1977, 3, 27–34. [Google Scholar] [CrossRef]
- Kenny, L.B. The Effects of Rotational and Continuous Grazing on Horses, Pasture Condition, and Soil Properties. M.Sc. Thesis, Rutgers University, New Brunswick, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Herrero-Jáuregui, C.; Oesterheld, M. Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos 2018, 127, 757–766. [Google Scholar] [CrossRef]
- van Klink, R.; Nolte, S.; Mandema, F.S.; Lagendijk, D.D.G.; WallisDeVries, M.F.; Bakker, J.P.; Esselink, P.; Smit, C. Effects of grazing management on biodiversity across trophic levels–The importance of livestock species and stocking density in salt marshes. Agric. Ecosyst. Environ. 2016, 235, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Milchunas, D.G.; Varnamkhasti, A.S.; Lauenroth, W.K.; Goetz, H. Forage quality in relation to long-term grazing history, current-year defoliation, and water resource. Oecologia 1995, 101, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Tonn, B.; Densing, E.M.; Gabler, J.; Isselstein, J. Grazing-induced patchiness, not grazing intensity, drives plant diversity in European low-input pastures. J. Appl. Ecol. 2019, 56, 1624–1636. [Google Scholar] [CrossRef]
- Hennig, J.D.; Beck, J.L.; Scasta, D.J. Spatial Ecology Observations from Feral Horses Equipped With Global Positioning System Transmitters. Hum. Wildl. Interact. 2018, 12, 10. [Google Scholar]
- Henning, K.; Lorenz, A.; von Oheimb, G.; Härdtle, W.; Tischew, S. Year-round cattle and horse grazing supports the restoration of abandoned, dry sandy grassland and heathland communities by supressing Calamagrostis epigejos and enhancing species richness. J. Nat. Conserv. 2017, 40, 120–130. [Google Scholar] [CrossRef]
- Lamoot, I.; Callebaut, J.; Degezelle, T.; Demeulenaere, E.; Laquière, J.; Vandenberghe, C.; Hoffmann, M. Eliminative behaviour of free-ranging horses: Do they show latrine behaviour or do they defecate where they graze? Appl. Anim. Behav. Sci. 2004, 86, 105–121. [Google Scholar] [CrossRef]
- Rupprecht, D.; Gilhaus, K.; Hölzel, N. Effects of year-round grazing on the vegetation of nutrient-poor grass- and heathlands—Evidence from a large-scale survey. Agric. Ecosyst. Environ. 2016, 234, 16–22. [Google Scholar] [CrossRef]
- Köhler, M.; Hiller, G.; Tischew, S. Year-round horse grazing supports typical vascular plant species, orchids and rare bird communities in a dry calcareous grassland. Agric. Ecosyst. Environ. 2016, 234, 48–57. [Google Scholar] [CrossRef]
- Saastamoinen, M.; Herzon, I.; Särkijärvi, S.; Schreurs, C.; Myllymäki, M. Horse Welfare and Natural Values on Semi-Natural and Extensive Pastures in Finland: Synergies and Trade-Offs. Land 2017, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P. Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Briemle, G.; Nitsche, S.; Nitsche, L. Nutzungswertzahlen für Gefäßpflanzen des Grünlandes. Schriftenreihe Für Veg. 2002, 38, 203–225. [Google Scholar]
- Kleijn, D.; Berendse, F.; Smit, R.; Gilissen, N. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 2001, 413, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Ulber, L.; Steinmann, H.-H.; Klimek, S.; Isselstein, J. An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res. 2009, 49, 534–543. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Braunbeck, T.; Schneider, M.K. Influence of Highland and production-oriented cattle breeds on pasture vegetation: A pairwise assessment across broad environmental gradients. Agric. Ecosyst. Environ. 2019, 284, 106585. [Google Scholar] [CrossRef]
- LandNRW. Digital Orthophoto (DOP RGBI). Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/luftbildinformationen/aktuell/digitale_orthophotos/index.html. (accessed on 22 December 2015).
- Landesdatenbank Nordrhein-Westfalen Bodennutzungshaupterhebung. Available online: https://www.landesdatenbank.nrw.de/ldbnrw/online/data;sid=120F53FEBB1ECAD3E7473A272AFD6B20.ldb1?operation=statistikAbruftabellen&levelindex=0&levelid=1577708904302&index=3 (accessed on 30 December 2019).
- Castle, M.E. A simple disc instrument for estimating herbage yield. Grass Forage Sci. 1976, 31, 37–40. [Google Scholar] [CrossRef]
- QGIS Entwicklungsteam. QGIS Geographisches Informationssystem. In Open Source Geospatial Foundation Projekt; Version 2.6; QGIS Entwicklungsteam: Brighton, UK, 2014. [Google Scholar]
- LandNRW. Digital elevation model (DEM50). Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/gelaendemodell/index.html, (accessed on 22 December 2015).
- Hünig, C.; und Benzler, A. Das Monitoring der Landwirtschaftsflächen mit hohem Naturwert in Deutschland; BfN Skripten 476, Bonn; 2017; Available online: https://www.bfn.de/fileadmin/BfN/service/Dokumente/skripten/Skript476.pdf (accessed on 30 December 2019).
- Bundesamt für Naturschutz (BfN). Kenntaxa für die regional differenzierte Bewertung von Grünlandflächen im Rahmen des HNV-Farmland-Indikators für Deutschland; Bonn; 2014; Available online: https://www.bfn.de/fileadmin/BfN/monitoring/Dokumente/14_02_26_Kennartenliste_HNV_barrfrei.pdf (accessed on 30 December 2019).
- Hunt, R.; Hodgson, J.G.; Thompson, K.; Bungener, P.; Dunnett, N.; Askew, A. A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci. 2004, 7, 163–170. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Zuur, A.F. (Ed.) Mixed Effects Models and Extensions in Ecology with R; Statistics for biology and health; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Grueber, C.E.; Nakagawa, S.; Laws, R.J.; Jamieson, I.G. Multimodel inference in ecology and evolution: Challenges and solutions: Multimodel inference. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference, R package version 1.43.15; 2019; Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 20 January 2020).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-137; 2018; Available online: https://CRAN.R-project.org/package=nlme> (accessed on 1 September 2018).
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. emmeans. Estimated Marginal Means, aka Least-Squares Means, R package version 1.4.3.01; 2019. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 20 January 2020).
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Klimek, S.; Richter gen. Kemmermann, A.; Hofmann, M.; Isselstein, J. Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors. Biol. Conserv. 2007, 134, 559–570. [Google Scholar] [CrossRef]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Baumbach, H.; Gockel, S.; Hemp, A.; Schöning, I.; Wells, K.; Buscot, F.; et al. Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic Appl. Ecol. 2013, 14, 126–136. [Google Scholar] [CrossRef]
- Basto, S.; Thompson, K.; Phoenix, G.; Sloan, V.; Leake, J.; Rees, M. Long-term nitrogen deposition depletes grassland seed banks. Nat. Commun. 2015, 6, 6185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkó, O.; Tóthmérész, B.; Kelemen, A.; Simon, E.; Miglécz, T.; Lukács, B.A.; Török, P. Environmental factors driving seed bank diversity in alkali grasslands. Agric. Ecosyst. Environ. 2014, 182, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Wellstein, C.; Otte, A.; Waldhardt, R. Impact of site and management on the diversity of central European mesic grassland. Agric. Ecosyst. Environ. 2007, 122, 203–210. [Google Scholar] [CrossRef]
- Pykälä, J. Plant species responses to cattle grazing in mesic semi-natural grassland. Agric. Ecosyst. Environ. 2005, 108, 109–117. [Google Scholar] [CrossRef]
- Menard, C.; Duncan, P.; Fleurance, G.; Georges, J.-Y.; Lila, M. Comparative foraging and nutrition of horses and cattle in European wetlands. J. Appl. Ecol. 2002, 39, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Bonari, G.; Fajmon, K.; Malenovský, I.; Zelený, D.; Holuša, J.; Jongepierová, I.; Kočárek, P.; Konvička, O.; Uřičář, J.; Chytrý, M. Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agric. Ecosyst. Environ. 2017, 246, 243–252. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa, 3rd ed.; Verlag Eric Goltze: Göttingen, Germany, 1992. [Google Scholar]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; van Groenendael, J.M.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef]
TOTAL (N = 156) | C | HC | HR | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Mean | sd | Min | Max | est. | Contrast | p | Contrast | p |
Paddock size (ha) | 2.06 | 2.7 | 0.20 | 14 | 3.2 | −1.2 | * | −2.0 | *** |
Altitude (m.a.s.l.) | 239.2 | 44.4 | 118.7 | 335 | 238.6 | −0.2 | −2.0 | ||
Slope (%) | 9.0 | 4.9 | 1 | 26.3 | 9.5 | −0.8 | −0.5 | ||
Fertiliser N kg ha−1 year−1 | 38 | 44 | 0 | 265 | 50.2 | −31.8 | *** | −6.2 | |
Stocking rate ha−1 year−1 | 1.28 | 1 | 0.04 | 7.2 | 1.3 | 0.0 | −0.06 | ||
Soil pH | 5.2 | 0.5 | 4.3 | 6.8 | 5.3 | −0.2 | * | −0.2 | |
P2O5 mg 100 g DM−1 | 12.8 | 6.4 | 3.2 | 33.4 | 12.9 | −0.5 | −0.2 | ||
K2O mg 100 g DM−1 | 26.5 | 13.4 | 5.9 | 76.7 | 27.0 | 0.6 | −2.3 |
Grazing System | Grassland Management | Abiotic Site Conditions | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HC | HR | Stocking Rate | N Fertilisation | Mowing | Ha | Slope | pH | P2O5 | |||||||||||||||||||
Species Variable | Inter-cept | coef | I | P | coef | P | coef | I | P | coef | I | P | coef | I | P | coef | I | P | coef | I | P | coef | I | P | coef | I | P |
SR | 52.08 | 12.04 | 1 | *** | 4.60 | * | 0.14 | 0.26 | −0.39 | 0.29 | −1.78 | 0.52 | 0.28 | 0.27 | 11.59 | 1 | *** | −2.55 | 0.57 | −7.48 | 0.98 | ** | |||||
HNV-SR | 5.48 | 3.34 | 1 | *** | 1.14 | 0.07 | 0.27 | −0.23 | 0.35 | −0.34 | 0.39 | 0.04 | 0.25 | 2.81 | 0.99 | *** | −1.81 | 0.87 | −1.77 | 0.90 | * | ||||||
%C | 0.41 | −0.02 | 0.83 | . | 0.01 | −0.01 | 0.72 | 0.00 | 0.26 | 0.002 | 0.35 | 0.003 | 0.38 | −0.002 | 0.34 | 0.001 | 0.31 | 0.003 | 0.39 | ||||||||
%S | 0.21 | 0.01 | 0.68 | 0.01 | −0.01 | 0.79 | −0.00 | 0.25 | −0.001 | 0.29 | −0.002 | 0.33 | 0.025 | 1 | *** | −0.01 | 0.49 | −0.03 | 1 | *** | |||||||
%R | 0.40 | 0.00 | 0.34 | 0.00 | 0.002 | 1 | *** | −0.00 | 0.28 | 0.00 | 0.25 | −0.00 | 0.25 | −0.001 | 0.83 | −0.001 | 0.25 | 0.02 | 0.98 | ** | |||||||
Grazing | 6.39 | −0.06 | 0.66 | −0.146 | 0.28 | 0.99 | *** | −0.07 | 0.48 | 0.10 | 0.55 | 0.00 | 0.26 | −0.28 | 0.96 | ** | −0.01 | 0.26 | 0.35 | 1 | *** | ||||||
Trampling | 6.33 | −0.11 | 0.50 | −0.091 | 0.23 | 0.97 | ** | −0.02 | 0.32 | 0.13 | 0.69 | 0.01 | 0.29 | −0.30 | 0.99 | *** | 0.02 | 0.33 | 0.36 | 1 | *** | ||||||
Forage | 6.90 | −0.27 | 0.87 | * | −0.114 | −0.08 | 0.657 | 0.11 | 0.56 | ** | 0.22 | 0.83 | 0.05 | 0.42 | −0.13 | 0.75 | ** | 0.04 | 0.37 | * | 0.3 | 0.97 | ** | ||||
Sørensen | 0.71 | −0.063 | 1 | *** | −0.058 | *** | −0.006 | 0.39 | 0.00 | 0.27 | 0.014 | 0.54 | 0.00 | 0.25 | 0.04 | 0.96 | ** | 0.01 | 0.50 | 0.00 | 0.26 |
Grassland Management | Abiotic Site Conditions | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grazing System | Stocking Rate | N Fertilisation | Mowing | Ha | Slope | pH | P2O5 | ||||||||||
Species Variable | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | Rm2 |
SR | 17.6 | <0.001 | 3.5 | 0.06 | 26.9 | <0.001 | 14.9 | <0.001 | 0.31 | ||||||||
HNV-SR | 14.9 | <0.001 | 20.7 | <0.001 | 5.4 | 0.02 | 13.9 | <0.001 | 0.31 | ||||||||
%C | 4.7 | 0.01 | 5.8 | 0.02 | 0.08 | ||||||||||||
%S | 3.5 | 0.03 | 4.0 | 0.047 | 21.1 | <0.001 | 33.2 | <0.001 | 0.31 | ||||||||
%R | 16.2 | <0.001 | 7.6 | 0.007 | 10.28 | 0.002 | 0.19 | ||||||||||
Grazing | 3.1 | 0.04 | 13.8 | <0.001 | 11.9 | <0.001 | 15.4 | <0.001 | 0.24 | ||||||||
Trampling | 2.7 | 0.07 | 11.7 | <0.001 | 1.1 | 0.29 | 17.7 | <0.001 | 22.6 | <0.001 | 0.30 | ||||||
Forage | 8.8 | <0.001 | 6.5 | 0.01 | 11.2 | 0.001 | 6.7 | 0.01 | 11.2 | 0.001 | 0.24 | ||||||
Sørensen | 9.4 | <0.001 | 4.1 | 0.04 | 9.8 | 0.002 | 2.2 | 0.14 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, A.; Isselstein, J. Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing. Sustainability 2020, 12, 3300. https://doi.org/10.3390/su12083300
Schmitz A, Isselstein J. Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing. Sustainability. 2020; 12(8):3300. https://doi.org/10.3390/su12083300
Chicago/Turabian StyleSchmitz, Anja, and Johannes Isselstein. 2020. "Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing" Sustainability 12, no. 8: 3300. https://doi.org/10.3390/su12083300
APA StyleSchmitz, A., & Isselstein, J. (2020). Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing. Sustainability, 12(8), 3300. https://doi.org/10.3390/su12083300