Stabilization/Solidification of Zinc- and Lead-Contaminated Soil Using Limestone Calcined Clay Cement (LC3): An Environmentally Friendly Alternative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Artificially Contaminated Soil and S/S Samples Preparation
2.3. Testing Methods
3. Results and Discussion
3.1. Leachate pH
3.2. Zn and Pb Leachability
3.3. Unconfined Compressive Strength
3.4. Chemical Speciation of Heavy Metals
3.5. XRPD Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xia, W.Y.; Du, Y.J.; Li, F.S.; Guo, G.L.; Yan, X.L.; Li, C.P.; Arulrajah, A.; Wang, F.; Wang, S. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter. Constr. Build. Mater. 2019, 210, 278–288. [Google Scholar] [CrossRef]
- Xia, W.Y.; Feng, Y.S.; Jin, F.; Zhang, L.M.; Du, Y.J. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 2017, 156, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Li, J.S.; Wang, L.; Cui, J.L.; Poon, C.S.; Beiyuan, J.; Tsang, D.C.W.; Li, X.D. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Sci. Total Environ. 2018, 631, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.J.; Wu, J.; Bo, Y.L.; Jiang, N.J. Effects of acid rain on physical, mechanical and chemical properties of GGBS–MgO-solidified/stabilized Pb-contaminated clayey soil. Acta Geotech. 2020, 15, 923–932. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Z.; Liu, R.; Zhang, Y.; Xu, J.; Al-Tabbaa, A. GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: Physical and microstructural properties. Chemosphere 2020, 239, 124738. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cho, D.; Tsang, D.C.W.; Cao, X.; Hou, D.; Shen, Z.; Alessi, D.S.; Sik, Y.; Sun, C. Green remediation of As and Pb contaminated soil using cement-free clay- based stabilization/solidi fi cation. Environ. Int. 2019, 126, 336–345. [Google Scholar] [CrossRef]
- Xia, W.Y.; Du, Y.J.; Li, F.S.; Li, C.P.; Yan, X.L.; Arulrajah, A.; Wang, F.; Song, D.J. In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder. J. Hazard. Mater. 2019, 369, 353–361. [Google Scholar] [CrossRef]
- Devi, P.; Kothari, P.; Dalai, A.K. Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders. J. Hazard. Mater. 2020, 385, 121559. [Google Scholar] [CrossRef]
- Wu, H.L.; Du, Y.J.; Yu, J.; Yang, Y.L.; Li, V.C. Hydraulic conductivity and self-healing performance of Engineered Cementitious Composites exposed to Acid Mine Drainage. Sci. Total Environ. 2020, 716, 137095. [Google Scholar] [CrossRef]
- Capasso, I.; Lirer, S.; Flora, A.; Ferone, C.; Cioffi, R.; Caputo, D.; Liguori, B. Reuse of mining waste as aggregates in fly ash-based geopolymers. J. Clean. Prod. 2019, 220, 65–73. [Google Scholar] [CrossRef]
- Ferone, C.; Capasso, I.; Bonati, A.; Roviello, G.; Montagnaro, F.; Santoro, L.; Turco, R.; Cioffi, R. Sustainable management of water potabilization sludge by means of geopolymers production. J. Clean. Prod. 2019, 229, 1–9. [Google Scholar] [CrossRef]
- El-Eswed, B.I.; Aldagag, O.M.; Khalili, F.I. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 2017, 140, 148–156. [Google Scholar] [CrossRef]
- Pantazopoulou, E.; Ntinoudi, E.; Zouboulis, A.; Mitrakas, M.; Yiannoulakis, H.; Zampetakis, T. Heavy metal stabilization of industrial solid wastes using low-grade magnesia, Portland and magnesia cements. J. Mater. Cycles Waste Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- Sharma, H.D.; Reddy, K.R. Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-471-21599-8. [Google Scholar]
- Du, Y.-J.; Jiang, N.-J.; Liu, S.-Y.; Jin, F.; Singh, D.N.; Puppala, A.J. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin. Can. Geotech. J. 2014, 51, 289–302. [Google Scholar] [CrossRef]
- Wu, H.L.; Jin, F.; Bo, Y.L.; Du, Y.J.; Zheng, J.X. Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests. Constr. Build. Mater. 2018, 172, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.-Y.; Feng, Y.-S.; Du, Y.-J.; Reddy, K.R.; Wei, M.-L. Solidification and Stabilization of Heavy Metal–Contaminated Industrial Site Soil Using KMP Binder. J. Mater. Civ. Eng. 2018, 30, 04018080. [Google Scholar] [CrossRef]
- Du, Y.-J.; Wei, M.-L.; Reddy, K.R.; Jin, F.; Wu, H.-L.; Liu, Z.-B. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization. J. Environ. Manag. 2014, 146, 179–188. [Google Scholar] [CrossRef]
- Patel, H.; Pandey, S. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants. J. Hazard. Mater. 2012, 207, 56–64. [Google Scholar] [CrossRef]
- Soundararajan, R. An overview of present day immobilization technologies. J. Hazard. Mater. 1990, 24, 199–212. [Google Scholar] [CrossRef]
- Reddy, V.A.; Solanki, C.H.; Kumar, S.; Reddy, K.R.; Du, Y.J. New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil. Chemosphere 2019, 235, 308–315. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Cement & Concrete Composites Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013, 37, 319–327. [Google Scholar]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. Cement and Concrete Research The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Cancio, Y.; Heierli, U.; Favier, A.R.; Machado, R.S.; Scrivener, K.L.; Fernando, J.; Hernández, M.; Habert, G. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Kavitha, O.R.; Shanthi, V.M.; Arulraj, G.P.; Sivakumar, V.R. Microstructural studies on eco-friendly and durable Self-compacting concrete blended with metakaolin. Appl. Clay Sci. 2016, 124, 143–149. [Google Scholar] [CrossRef]
- Pan, S.Y.; Shah, K.J.; Chen, Y.H.; Wang, M.H.; Chiang, P.C. Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy. ACS Sustain. Chem. Eng. 2017, 5, 6429–6437. [Google Scholar] [CrossRef]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Available online: https://compass.astm.org/EDIT/html_annot.cgi?D2487+17e1 (accessed on 19 December 2016).
- Du, Y.J.; Wei, M.L.; Reddy, K.R.; Wu, H. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils. Chemosphere 2016, 144, 1033–1042. [Google Scholar] [CrossRef]
- ASTM C192/C192M Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. 2016, pp. 1–8. Available online: https://compass.astm.org/EDIT/html_annot.cgi?C192+19 (accessed on 19 December 2016).
- ASTM Standard D2166 Standard Test Method for Unconfined Compressive Strength of cohesive soil. 2008. Available online: https://compass.astm.org/EDIT/html_annot.cgi?D2166+16 (accessed on 19 December 2016).
- ASTM Standard D4972 Test Method for pH of Soils. 2007. Available online: https://compass.astm.org/EDIT/html_annot.cgi?D4972+19 (accessed on 19 December 2016).
- USEPA. USEPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP). 1992. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure (accessed on 23 August 2016).
- Muhammad, F.; Huang, X.; Li, S.; Xia, M.; Zhang, M.; Liu, Q. Strength evaluation by using polycarboxylate superplasticizer and solidi fi cation ef fi ciency of Cr 6 þ, Pb 2 þ and Cd 2 þ in composite based geopolymer. J. Clean. Prod. 2018, 188, 807–815. [Google Scholar] [CrossRef]
- Ščančar, J.; Strazar, M.; Burica, O. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci. Total Environ. 2000, 250, 9–19. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential Extraction Procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, L.; Tang, H.; Sun, Z.; Liu, W.; Sun, Y.; Su, S.; Hu, S.; Wang, Y.; Xu, K.; et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst. Chemosphere 2018, 207, 440–448. [Google Scholar] [CrossRef] [PubMed]
- ISO. Determination of Elements in Aqua Regia and Nitric Acid Digests by Flame Atomic Absorption Spectrometry. 2002, pp. 1–17. Available online: https://horizontal.ecn.nl/docs/society/horizontal/STD6241_AAS-Flame.pdf (accessed on 1 January 2017).
- Wang, F.; Zhang, F.; Chen, Y.; Gao, J.; Zhao, B. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. J. Hazard. Mater. 2015, 300, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, Y.; Santhanam, M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem. Concr. Compos. 2017, 84, 36–47. [Google Scholar] [CrossRef]
- Wang, Y.S.; Dai, J.G.; Wang, L.; Tsang, D.C.W.; Poon, C.S. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere 2018, 190, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Marangu, J.M. Physico-chemical properties of Kenyan made calcined Clay -Limestone cement (LC3). Case Stud. Constr. Mater. 2020, 12, e00333. [Google Scholar] [CrossRef]
- Danner, T.; Norden, G.; Justnes, H. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl. Clay Sci. 2018, 162, 391–402. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Vignesh, K.; Raja, T.; Santhanam, M. Development of the Microstructure in LC3 Systems and Its Effect on Concrete Properties. In Calcined Clays for Sustainable Concrete; Scrivener, K., Favier, A., Eds.; Springer: Dordrecht, The Netherlands, 2018; Volume 10, pp. 131–140. ISBN 978-94-017-9938-6. [Google Scholar]
- Ministry of Environment and Forests. MOEF Hazardous and Other Wastes-Ministry of Environment and Forests. Gazzate India 2016, 1981, 1–68. [Google Scholar]
- Gu, Y.C.; Li, J.L.; Peng, J.K.; Xing, F.; Long, W.J.; Khayat, K.H. Immobilization of hazardous ferronickel slag treated using ternary limestone calcined clay cement. Constr. Build. Mater. 2020, 250, 118837. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Krishnan, S.; Emmanuel, A.C.; Shah, V.; Parashar, A.; Mishra, G.; Maity, S.; Bishnoi, S. Industrial production of limestone calcined clay cement: Experience and insights. Green Mater. 2019, 7, 15–27. [Google Scholar] [CrossRef]
- Feng, Y.S.; Du, Y.J.; Reddy, K.R.; Xia, W.Y. Performance of two novel binders to stabilize field soil with zinc and chloride: Mechanical properties, leachability and mechanisms assessment. Constr. Build. Mater. 2018, 189, 1191–1199. [Google Scholar] [CrossRef]
- Liu, G.; Tao, L.; Liu, X.; Hou, J.; Wang, A.; Li, R. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
Oxide | Value (%) a |
---|---|
Silicon oxide (SiO2) | 54.26 |
Aluminium oxide (Al2O3) | 17.86 |
Ferric oxide (Fe2O3) | 12.17 |
Calcium oxide (CaO) | 4.24 |
Magnesium oxide (MgO) | 7.17 |
Potassium oxide (K2O) | 0.06 |
Titanium oxide (TiO2) | ND c |
Sulphur trioxide (SO3) | 1.28 |
Loss on ignition b | 2.67 |
Sample Designation | OMC (%) | MDD (kg/m3) |
---|---|---|
ZnU | 29 | 1.47 × 103 |
PbU | 29 | 1.46 × 103 |
Zn 0.5 | 32 | 1.42 × 103 |
Zn 1.0 | 33 | 1.43 × 103 |
Pb 0.5 | 32 | 1.43 × 103 |
Pb 1.0 | 33 | 1.43 × 103 |
ZnPb 1.0 | 33 | 1.44 × 103 |
Initial Soil Contamination Condition | ZnU | PbU | Zn 0.5 | Zn 1.0 | Pb 0.5 | Pb 1.0 | ZnPb 1.0 |
---|---|---|---|---|---|---|---|
Curing (days) | |||||||
3 | - | - | 599.65 | 586.35 | 422.54 | 394.22 | 447.35 |
7 | - | - | 689.67 | 638.37 | 569.54 | 492.33 | 587.26 |
14 | - | - | 812.34 | 754.32 | 733.51 | 688.34 | 713.35 |
28 | 423.35 | 336.84 | 1089.38 | 1025.37 | 986.82 | 829.64 | 1121.67 |
56 | - | - | 1364.38 | 1296.35 | 1195.24 | 1027.33 | 1142.54 |
Sample Designation | ZnU | PbU | Zn 0.5 | Zn 1.0 | Pb 0.5 | Pb 1.0 | ZnPb 1.0 |
---|---|---|---|---|---|---|---|
Metal recovery rate (MRR%) | 91 | 82 | 86 | 93 | 88 | 94 | 95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, V.A.; Solanki, C.H.; Kumar, S.; Reddy, K.R.; Du, Y.-J. Stabilization/Solidification of Zinc- and Lead-Contaminated Soil Using Limestone Calcined Clay Cement (LC3): An Environmentally Friendly Alternative. Sustainability 2020, 12, 3725. https://doi.org/10.3390/su12093725
Reddy VA, Solanki CH, Kumar S, Reddy KR, Du Y-J. Stabilization/Solidification of Zinc- and Lead-Contaminated Soil Using Limestone Calcined Clay Cement (LC3): An Environmentally Friendly Alternative. Sustainability. 2020; 12(9):3725. https://doi.org/10.3390/su12093725
Chicago/Turabian StyleReddy, Vemula Anand, Chandresh H. Solanki, Shailendra Kumar, Krishna R. Reddy, and Yan-Jun Du. 2020. "Stabilization/Solidification of Zinc- and Lead-Contaminated Soil Using Limestone Calcined Clay Cement (LC3): An Environmentally Friendly Alternative" Sustainability 12, no. 9: 3725. https://doi.org/10.3390/su12093725
APA StyleReddy, V. A., Solanki, C. H., Kumar, S., Reddy, K. R., & Du, Y. -J. (2020). Stabilization/Solidification of Zinc- and Lead-Contaminated Soil Using Limestone Calcined Clay Cement (LC3): An Environmentally Friendly Alternative. Sustainability, 12(9), 3725. https://doi.org/10.3390/su12093725