Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Screening for Mangrove-Associated Fungi
2.1.1. Activity against Phytopathogens
2.1.2. Plant-Growth Promotion
2.1.3. Extracellular Enzyme Activity
2.1.4. Molecular Identification of Fungi
2.2. Composting Experiment
2.2.1. Physio-Chemical Properties
2.2.2. Plant-Growth Promoting Activity
2.2.3. Disease Defense Ability of Seeds
2.3. Statistical Analysis
3. Results
3.1. Preliminary Screening of the Fungal Isolates
3.2. Composting Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ouda, O.K.M.; Cekirge, H.M.; Raza, S.A.R. An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers. Manag. 2013, 75, 402–406. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of solid organic waste composting products: A critical review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Noble, R.; Coventry, E. Suppression of soil-borne plant diseases with composts: A review. Biocontrol Sci. Technol. 2005, 15, 3–20. [Google Scholar] [CrossRef]
- Postma, J.; Montanari, M.; van den Boogert, P.H.J.F. Microbial enrichment to enhance the disease suppressive activity of compost. Eur. J. Soil Biol. 2003, 39, 157–163. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Arora, A.; Shah, R.; Singh, A.; Pranaw, K.; Nain, L. Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. Int. J. Recycl. Org. Waste Agric. 2014, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhang, Y.; Xia, X.; Qi, H.; Li, M.; Pan, H.; Xi, B. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste. Microb. Biotechnol. 2018, 11, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Saha, T.N.; Arora, A.; Shah, R.; Nain, L. Efficient Microorganism compost benefits plant growth and improves soil health in calendula and marigold. Hortic. Plant J. 2017, 3, 67–72. [Google Scholar] [CrossRef]
- Kumar, A.; Brar, N.S.; Pal, S.; Singh, P. Available soil macro and micronutrients under rice wheat cropping system in District Tarn Taran of Punjab. Ecol. Enviton. Conserv. 2017, 23, 202–207. [Google Scholar]
- Damare, V.S.; Kajawadekar, K.G. A preliminary study on L-asparaginase from mangrove detritus-derived fungi and its application in plant growth promotion. MycoAsia J. 2020, 4. [Google Scholar]
- Sureshkumar, P.; Kavitha, S. Bioprospecting potential of mangrove fungus from vellar estuary, southeast coast of india for biocontrol of damping off on mustard. Res. J. Biotechnol. 2019, 14, 72–78. [Google Scholar]
- Hamzah, T.N.T.; Lee, S.Y.; Hidayat, A.; Terhem, R.; Faridah-Hanum, I.; Mohamed, R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol. 2018, 9, 1707. [Google Scholar] [CrossRef]
- Al-Shibli, H.; Dobretsov, S.; Al-Nabhani, A.; Maharachchikumbura, S.S.N.; Rethinasamy, V.; Al-Sadi, A.M. Aspergillus terreus obtained from mangrove exhibits antagonistic activities against Pythium aphanidermatum-induced damping-off of cucumber. PeerJ 2019, 7, e7884. [Google Scholar] [CrossRef] [Green Version]
- He, X.-T.; Traina, S.J.; Logan, T.J. Chemical properties of municipal solid waste composts. J. Environ. Qual. 1992, 21, 318–329. [Google Scholar] [CrossRef]
- Harada, Y.; Inoko, A. The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 1980, 26, 127–134. [Google Scholar] [CrossRef]
- Nandi, M.; Selin, C.; Brawerman, G.; Fernando, W.G.D.; de Kievit, T. Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol. Control. 2017, 108, 47–54. [Google Scholar] [CrossRef]
- Ozimek, E.; Jaroszuk-Ściseł, J.; Bohacz, J.; Korniłłowicz-Kowalska, T.; Tyśkiewicz, R.; Słomka, A.; Nowak, A.; Hanaka, A. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 2018, 19, 3218. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, M.; Srivastava, S. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur. J. Soil Biol. 2009, 45, 73–80. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameen, F.; Moslem, M.; Hadi, S. Biodegradation of Urban Waste by Mangrove Fungi; Lap Lambert Academic Publishing GmbH & Company KG: Saarbrücken, Germany, 2015; p. 236. [Google Scholar]
- Khan, A.L.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H.; Lee, I.-J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, A.; Khan, N.; Irshad, M.; Hamayun, M.; Husna, I.; Javed, A.; Hussain, A. IAA producing endopytic fungus Fusariun oxysporum wlw colonize maize roots and promoted maize growth under hydroponic condition. Eur. Exp. Biol. 2018, 8, 24. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Lee, I.-J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Sambrook, H.C. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor: New York, NY, USA, 1989. [Google Scholar]
- Ameen, F.; AlYahya, S.A.; AlNadhari, S.; Alasmari, H.; Alhoshani, F.; Wainwright, M. Phosphate solubilizing bacteria and fungi in desert soils: Species, limitations and mechanisms. Arch. Agron. Soil Sci. 2019, 65, 1446–1459. [Google Scholar] [CrossRef]
- Maria, G.L.; Sridhar, K.R.; Raviraja, N.S. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J. Agric. Technol. 2005, 1, 67–80. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pcr. Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Iqbal, M.K.; Nadeem, A.; Sherazi, F.; Khan, R.A. Optimization of process parameters for kitchen waste composting by response surface methodology. Int. J. Environ. Sci. Technol. 2015, 12, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the US. Waste Manag. 2017, 59, 476–486. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Alessi, A.; Lopes, A.d.C.P.; Müller, W.; Gerke, F.; Robra, S.; Bockreis, A. Mechanical separation of impurities in biowaste: Comparison of four different pretreatment systems. Waste Manag. 2020, 106, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Almahasheer, H. High levels of heavy metals in Western Arabian Gulf mangrove soils. Mol. Biol. Rep. 2019, 46, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Al-Homaidan, A.A.; Al-Ghanayem, A.A.; Al-Qahtani, H.S.; Al-Abbad, A.F.; Alabdullatif, J.A.; Alwakeel, S.S.; Ameen, F. Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere 2020, 263, 127998. [Google Scholar] [CrossRef]
- Ameen, F.; Hadi, S.; Moslem, M.; Al-Sabri, A.; Yassin, M.A. Biodegradation of engine oil by fungi from mangrove habitat. J. Gen. Appl. Microbiol. 2015, 61, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Ameen, F.; Moslem, M.A.; Hadi, S.; Al-Sabri, A. Biodegradation of cellulosic materials by marine fungi isolated from South Corniche of Jeddah, Saudi Arabia. J. Pure Appl. Microbiol. 2014, 8, 3617–3626. [Google Scholar]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of Low Density Polyethylene (LDPE) by Mangrove Fungi From the Red Sea Coast. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 125. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Ahmad, I.; Alafif, Z.O.A.; Aburiazaiza, A.S.; Barakat, M.A.; Akhtar, T. Solid waste management in Saudi Arabia: A review. J. Appl. Agric. Biotechnol. 2016, 1, 13–26. [Google Scholar]
- Moosa, A.; Sahi, S.T.; Haq, I.-U.; Farzand, A.; Khan, S.A.; Javaid, K. Antagonistic potential of Trichoderma isolates and manures against Fusarium wilt of tomato. Int. J. Veg. Sci. 2017, 23, 207–218. [Google Scholar] [CrossRef]
- Suárez-Estrella, F.; Vargas-Garcia, C.; Lopez, M.J.; Capel, C.; Moreno, J. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop. Prot. 2007, 26, 46–53. [Google Scholar] [CrossRef]
- Özer, N.; Köycü, N.D. The ability of plant compost leachates to control black mold (Aspergillus niger) and to induce the accumulation of antifungal compounds in onion following seed treatment. BioControl 2006, 51, 229–243. [Google Scholar] [CrossRef]
- Postma, J.; Nijhuis, E.H. Pseudomonas chlororaphis and organic amendments controlling Pythium infection in tomato. Eur. J. Plant Pathol. 2019, 154, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhabi, N.A.; Esmail, G.A.; Mohammed Ghilan, A.-K.; Valan Arasu, M. Composting of Vegetable Waste Using Microbial Consortium and Biocontrol Efficacy of Streptomyces Sp. Al-Dhabi 30 Isolated from the Saudi Arabian Environment for Sustainable Agriculture. Sustainability 2019, 11, 6845. [Google Scholar] [CrossRef] [Green Version]
Mangrove Fungi | Fusarium oxysporum | Aspergillus niger | Aspergillus flavus | Bipolaris oryzae | Fusarium solani |
---|---|---|---|---|---|
Positive control | 12 ± 0.18 | 13 ± 0.11 | 10 ± 0.14 | 11 ± 0.13 | 14 ± 0.19 |
E. hirayamae | 16 ± 0.10 | 18 ± 0.18 | 18.5 ± 0.10 | 14.2 ± 0.12 | 17 ± 0.11 |
C. sphaerospermum | - | - | - | - | 10 ± 0.21 |
A. terreus | 8 ± 0.23 | 4 ± 0.21 | - | - | - |
P. vinaceum | 17 ± 0.12 | 14 ± 0.13 | 19 ± 0.21 | 15 ± 0.12 | 19 ± 0.13 |
P. alba | - | - | 6 ± 0.23 | - | 8 ± 0.21 |
G. pallida | 1.5 ± 0.24 | - | - | - | 4 ± 0.25 |
A. nomius | 5 ± 0.14 | - | - | 3 ± 0.15 | - |
A. alternata | - | 3 ± 0.18 | - | - | - |
P. variotii | 2.5 ± 0.13 | - | - | 7.5 ± 0.17 | - |
Mangrove Fungi | Amylase | Protease | Chitinase | Cellulase | Laccase | Lipase |
---|---|---|---|---|---|---|
E. hirayamae | +++ | +++ | +++ | +++ | ++ | ++ |
C. sphaerospermum | + | + | ||||
A. terreus | + | ++ | + | |||
P. vinaceum | +++ | +++ | +++ | +++ | +++ | ++ |
P. alba | + | |||||
G. pallida | + | + | + | + | ||
A. nomius | + | |||||
A. alternata | + | |||||
P. variotii | + |
Mangrove Fungi | Acc Deaminase | IAA Production | Phosphate Solubilization | HCN Production |
---|---|---|---|---|
E. hirayamae | +++ | +++ | +++ | +++ |
C. sphaerospermum | + | + | - | - |
A. terreus | + | - | - | - |
P. vinaceum | +++ | +++ | +++ | ++ |
P. alba | - | + | - | - |
G. pallida | + | - | - | - |
A. nomius | + | + | - | - |
A. alternata | - | + | - | - |
P. variotii | - | + | - | - |
Treatment | E. hirayamae | P. vinaceum | E. hirayamae P. vinaceum | Sterilized Control | Unsterilized Control |
---|---|---|---|---|---|
Compost property | |||||
Color | Blackish brown | Blackish brown | Blackish brown | Light brown | Brown |
Moisture (%) | 38 * | 40 * | 40 | 12 | 20 a |
pH | 7.5 * | 7.4 * | 7.4 | 7.0 | 7.2 |
OM (%) | 33 * | 36 * | 34 | 43 | 40 |
N (%) | 5.1 * | 5.0 * | 5.4 | 2.4 | 3.0 a |
C:N ratio | 6.4 * | 7.2 * | 6.2 | 17.9 | 13.3 a |
CEC (cmol(+) kg−1) | 64 * | 65 * | 64 | 34 | 39 a |
Treatment | Sterilized Control | E. hirayamae | P. vinaceum | E. hirayamae P. vinaceum | Unsterilized Control |
---|---|---|---|---|---|
Plant species | |||||
S. lycopersicum | 50 ± 5 | 20 ± 2 * | 10 ± 2 * | 0 ± 0 * | 60 ± 7 |
C. annuum | 50 ± 1 | 10 ± 3 * | 10 ± 1 * | 0 ± 0 * | 70 ± 5 a |
S. melongena | 70 ± 3 | 10 ± 2 * | 10 ± 1 * | 0 ± 0 * | 60 ± 4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, F.; Al-Homaidan, A.A. Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants . Sustainability 2021, 13, 124. https://doi.org/10.3390/su13010124
Ameen F, Al-Homaidan AA. Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants . Sustainability. 2021; 13(1):124. https://doi.org/10.3390/su13010124
Chicago/Turabian StyleAmeen, Fuad, and Ali A. Al-Homaidan. 2021. "Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants " Sustainability 13, no. 1: 124. https://doi.org/10.3390/su13010124
APA StyleAmeen, F., & Al-Homaidan, A. A. (2021). Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants . Sustainability, 13(1), 124. https://doi.org/10.3390/su13010124