Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Pre-Harvest Test
2.3. Combine Harvester Model and Setting
2.4. Work Productivity
2.5. Cost Analysis
2.6. Seed Loss Evaluation
2.7. Statistical Analysis
3. Results
3.1. Pre-Harvest Test
3.2. Work Productivity and Costs
3.3. Seed Loss Evaluation
4. Discussions
4.1. Aboveground Biomass Yield
4.2. Work Productivity and Costs
4.3. Seed Loss Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Righini, D.; Zanetti, F.; Monti, A. The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL 2016, 23, D504. [Google Scholar] [CrossRef] [Green Version]
- Krzyżaniak, M.; Stolarski, M.J.; Graban, Ł.; Lajszner, W.; Kuriata, T. Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy. Energies 2020, 13, 1503. [Google Scholar] [CrossRef] [Green Version]
- de Espinosa, L.M.; Meier, M.A.R. Plant oils: The perfect renewable resource for polymer science? Eur. Polym. J. 2011, 47, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, A.S. Plant oils as feedstock alternatives to petroleum–A short survey of potential oil crop platforms. Biochimie 2009, 91, 665–670. [Google Scholar] [CrossRef]
- Natelson, R.H.; Wang, W.C.; Roberts, W.L.; Zering, K.D. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil. Biomass Bioenergy 2015, 75, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M. Cultivation and processing of Linum usitatissimum and Camelina sativa in southern Scandinavia during the Roman Iron Age. Veg. Hist. Archaeobot. 2013, 22, 509–520. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Tworkowski, J.; Puttick, D.; Eynck, C.; Załuski, D.; Kwiatkowski, J. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crops Prod. 2019, 138, 111443. [Google Scholar] [CrossRef]
- Eidhin, D.N.; Burke, J.; O’Beirne, D. Oxidative stability of ω3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread. J. Food Sci. 2003, 68, 345–353. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.J.; Simpura, I.; Kokkonen, T.; Jaakkola, S.; Toivonen, V.; Vanhatalo, A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017, 100, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Hixson, S.M.; Parrish, C.C.; Wells, J.S.; Winkowski, E.M.; Anderson, D.M.; Bullerwell, C.N. Inclusion of camelina meal as a protein source in diets for farmed salmonids. Aquac. Nutr. 2016, 22, 615–630. [Google Scholar] [CrossRef]
- Lawrence, R.D.; Anderson, J.L. Ruminal degradation and intestinal digestibility of camelina meal and carinata meal compared with other protein sources. Prof. Anim. Sci. 2018, 34, 10–18. [Google Scholar] [CrossRef]
- Betancor, M.B.; MacEwan, A.; Sprague, M.; Gong, X.; Montero, D.; Han, L.; Napier, J.A.; Norambuena, F.; Izquierdo, M.; Tocher, D.R. Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax L.). Aquaculture 2021, 530, 735759. [Google Scholar] [CrossRef]
- Ciubota-Rosie, C.; Ruiz, J.R.; Ramos, M.J.; Pérez, Á. Biodiesel from Camelina sativa: A comprehensive characterisation. Fuel 2013, 105, 572–577. [Google Scholar] [CrossRef]
- Corporan, E.; Edwards, T.; Shafer, L.; DeWitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels 2011, 25, 955–966. [Google Scholar] [CrossRef]
- Kim, N.; Li, Y.; Sun, X.S. Epoxidation of Camelina sativa oil and peel adhesion properties. Ind. Crops Prod. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Allen, B.L.; Vigil, M.F.; Jabro, J.D. Camelina growing degree hour and base temperature requirements. Agron. J. 2014, 106, 940–944. [Google Scholar] [CrossRef]
- Berti, M.; Wilckens, R.; Fischer, S.; Solis, A.; Johnson, B. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crops Prod. 2011, 34, 1358–1365. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Gesch, R.W. Calendula and camelina response to nitrogen fertility. Ind. Crops Prod. 2013, 43, 684–691. [Google Scholar] [CrossRef]
- Román-Figueroa, C.; Padilla, R.; Uribe, J.; Paneque, M. Land Suitability Assessment for Camelina (Camelina sativa L.) Development in Chile. Sustainability 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Krzyżaniak, M.; Stolarski, M.J. Life cycle assessment of camelina and crambe production for biorefinery and energy purposes. J. Clean. Prod. 2019, 237, 117755. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 2000, 5, 349. [Google Scholar] [CrossRef]
- Zanetti, F.; Gesch, R.W.; Walia, M.K.; Johnson, J.M.F.; Monti, A. Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Res. 2020, 252, 107794. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Chen, C.; Bekkerman, A.; Afshar, R.K.; Neill, K. Intensification of dryland cropping systems for bio-feedstock production: Evaluation of agronomic and economic benefits of Camelina sativa. Ind. Crops Prod. 2015, 71, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Gesch, R.W.; Archer, D.W. Double-cropping with winter camelina in the northern Corn Belt to produce fuel and food. Ind. Crops Prod. 2013, 44, 718–725. [Google Scholar] [CrossRef]
- Berti, M.; Samarappuli, D.; Johnson, B.L.; Gesch, R.W. Integrating winter camelina into maize and soybean cropping systems. Ind. Crops Prod. 2017, 107, 595–601. [Google Scholar] [CrossRef]
- Royo-Esnal, A.; Valencia-Gredilla, F. Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate. Agriculture 2018, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Berti, M.T.; Samarappuli, D. Intersowing cover crops into standing soybean in the US upper midwest. Agronomy 2019, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, F.; Christou, M.; Alexopoulou, E.; Berti, M.T.; Vecchi, A.; Borghesi, A.; Monti, A. Innovative double cropping systems including camelina [Camelina sativa (L.) crantz] a valuable oilseed crop for bio-based applications. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Lisbon, Portugal, 27–30 May 2019; pp. 127–130. [Google Scholar]
- Christopher, L.P.; Kumar, H.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Bušić, A.; Kundas, S.; Morzak, G.; Belskaya, H.; Mardetko, N.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Recent trends in biodiesel and biogas production. Food Technol. Biotechnol. 2018, 56, 152–173. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Suardi, A.; Alfano, V.; Bergonzoli, S.; Palmieri, N.; Pari, L. A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs. Energies 2020, 13, 3385. [Google Scholar] [CrossRef]
- Pari, L.; Latterini, F.; Stefanoni, W. Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture 2020, 10, 309. [Google Scholar] [CrossRef]
- McVay, K.A.; Lamb, P.F. Camelina production in Montana. Bull. MT200701AG Mont. State Univ. 2008. [Google Scholar]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crops Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crops Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Leclère, M.; Jeuffroy, M.-H.; Butier, A.; Chatain, C.; Loyce, C. Controlling weeds in camelina with innovative herbicide-free crop management routes across various environments. Ind. Crops Prod. 2019, 140, 111605. [Google Scholar] [CrossRef]
- Obour, K.A.; Sintim, H.J.; Obeng, E.; Jeliazkov, V.D. Oilseed Camelina (Camelina sativa L. Crantz): Production Systems, Prospects and Challenges in the USA Great Plains. Adv. Plants Agric. Res. 2015, 2, 00043. [Google Scholar] [CrossRef] [Green Version]
- Stefanoni, W.; Latterini, F.; Ruiz, J.P.; Bergonzoli, S.; Attolico, C.; Pari, L. Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation. Energies 2020, 13, 5329. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; Garcia y Garcia, A. Managing harvest time to control pod shattering in oilseed camelina. Agron. J. 2016, 108, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and crambe production—Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crops Prod. 2019, 137, 386–395. [Google Scholar] [CrossRef]
- NSAI ISO 18134-2:2017 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. Available online: https://www.iso.org/standard/71536.html (accessed on 6 July 2020).
- ISO 17828:2015 ISO 17828:2015 Solid Biofuels—Determination of Bulk Density. Available online: https://www.iso.org/obp/ui/#iso:std:iso:17828:ed-1:v1:en (accessed on 23 July 2020).
- Reith, S.; Frisch, J.; Winkler, B. Revision of the working time classification to optimize work processes in modern agriculture. Chem. Eng. Trans. 2017, 58, 121–126. [Google Scholar] [CrossRef]
- Assirelli, A.; Pignedoli, S. Costo di esercizio delle macchine agricole. Cent. Ric. Prod. Anim. 2005, 5, 1–10. [Google Scholar]
- Suardi, A.; Stefanoni, W.; Bergonzoli, S.; Latterini, F.; Jonsson, N.; Pari, L. Comparison between Two Strategies for the Collection of Wheat Residue after Mechanical Harvesting: Performance and Cost Analysis. Sustainability 2020, 12, 4936. [Google Scholar] [CrossRef]
- Suardi, A.; Stefanoni, W.; Alfano, V.; Bergonzoli, S.; Pari, L. Equipping a Combine Harvester with Turbine Technology Increases the Recovery of Residual Biomass from Cereal Crops via the Collection of Chaff. Energies 2020, 13, 1572. [Google Scholar] [CrossRef] [Green Version]
- Suardi, A.; Saia, S.; Stefanoni, W.; Gunnarsson, C.; Sundberg, M.; Pari, L. Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. Energies 2020, 13, 1766. [Google Scholar] [CrossRef] [Green Version]
- Banca d’Italia Banca d’Italia Lending Rate. Available online: https://www.bancaditalia.it/ (accessed on 11 July 2020).
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2010. Available online: http://www.r-project.org/ (accessed on 6 August 2020).
- Mauri, P.V.; Mostaza, D.; Plaza, A.; Ruiz-Fernandez, J.; Prieto, J.; Capuano, A. Variability of camelina production in the center of Spain in two years of cultivation, a new profitable and alternative crop. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 196–200. [Google Scholar]
- Schillinger, W.F. Camelina: Long-term cropping systems research in a dry Mediterranean climate. Field Crop. Res. 2019, 235, 87–94. [Google Scholar] [CrossRef]
- Imbrea, F.; Jurcoane, S.; Hǎlmǎjan, H.V.; Duda, M.; Botoş, L. Camelina sativa: A new source of vegetal oils. Rom. Biotechnol. Lett. 2011, 16, 6263–6270. [Google Scholar]
- Lohaus, R.H.; Neupane, D.; Mengistu, M.A.; Solomon, J.K.Q.; Cushman, J.C. Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy 2020, 10, 562. [Google Scholar] [CrossRef]
- Grady, K.; Nleya, T. Camelina Production. Ext. Extra South Dakota State Univ. 2010, 8167, 1–3. [Google Scholar]
- Kuai, J.; Sun, Y.; Zuo, Q.; Huang, H.; Liao, Q.; Wu, C.; Lu, J.; Wu, J.; Zhou, G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.H.; Krens, F.; Smith, M.A.; Li, X.; Qi, W.; Van Loo, E.N.; Iven, T.; Feussner, I.; Nazarenus, T.J.; Huai, D.; et al. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Monedero, B.; Bimbela, F.; Arauzo, J.; Faria, J.; Ruiz, M.P. Pyrolysis of Red Eucalyptus, Camelina Straw, and Wheat Straw in an Ablative Reactor. Energy Fuels 2015, 29, 1766–1775. [Google Scholar] [CrossRef]
- Pagnotta, E.; Ugolini, L.; Matteo, R.; Lazzeri, L.; Foschi, L.; Angelini, L.G.; Tavarini, S. Exploring the Camelina sativa value chain: A new opportunity for bio-based products and overall crop sustainability. Riv. Ital. Delle Sostanze Grasse 2019, 96, 259–268. [Google Scholar]
- Pari, L.; Suardi, A.; Stefanoni, W.; Latterini, F.; Palmieri, N. Environmental and Economic Assessment of Castor Oil Supply Chain: A Case Study. Sustainability 2020, 12, 6339. [Google Scholar] [CrossRef]
- Bergonzoli, S.; Suardi, A.; Rezaie, N.; Alfano, V.; Pari, L. An innovative system for Maize Cob and wheat chaff harvesting: Simultaneous grain and residues collection. Energies 2020, 13, 1265. [Google Scholar] [CrossRef] [Green Version]
- Startsev, A.S.; Makarov, S.A.; Nesterov, E.S.; Kazakov, Y.F.; Terentyev, A.G. Comparative evaluation of the operation of a combine harvester with an additional sieve with adjustable holes for sunflower harvesting. IOP Conf. Ser. Earth Environ. Sci. 2020, 433. [Google Scholar] [CrossRef]
- Shaforostov, V.D.; Makarov, S.S. The header for a breeding plot combine for sunflower harvesting. Acta Technol. Agric. 2019, 22, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Asoodar, A.M.; Izadinia, Y.; Desbiolles, J. Benefits of harvester front extension in reducing canola harvest losses. Int. Agric. Eng. J. 2012, 21, 32–37. [Google Scholar]
- Pari, L.; Assirelli, A.; Suardi, A.; Civitarese, V.; Del Giudice, A.; Costa, C.; Santangelo, E. The harvest of oilseed rape (Brassica napus L.): The effective yield losses at on-farm scale in the Italian area. Biomass Bioenergy 2012, 46, 453–458. [Google Scholar] [CrossRef]
- Hobson, R.N.; Bruce, D.M. Seed loss when cutting a standing crop of oilseed rape with two types of combine harvester header. Biosyst. Eng. 2002, 81, 281–286. [Google Scholar] [CrossRef]
Parameter | Measure Unit | Value | |
---|---|---|---|
Machine | Power | kW | 240 |
Financial costs | Investment | € | 362,615 |
Service life | year | 10 | |
Service life | H | 3000 | |
Resale | % | 19.00 | |
Resale | € | 68,896.85 | |
Depreciation | € | 293,718.15 | |
Annual usage | h year−1 | 312 | |
Interest rate | % | 3 | |
Fixed costs | Ownership costs | € year−1 | 29,371.82 |
Interests | € year−1 | 6472.67775 | |
Machine shelter | m2 | 35.64 | |
Value of the shelter | € m−2 | 100 | |
Value of the shelter | € year−1 | 71.28 | |
Insurance | € year−1 | 906.5375 | |
Variable costs | Repair factor | % | 40 |
Repairs and maintenance | € h−1 | 50.28 | |
Fuel cost | € l−1 | 0.57 | |
Fuel consumption | l h−1 | 42.50 | |
Fuel cost | € h−1 | 24.23 | |
Lubricant cost | € l−1 | 3.03 | |
Lubricant consumption | l h−1 | 0.38 | |
Lubricant cost | € h−1 | 1.14 | |
Worker salary | € h−1 | 11.5 |
Parameter | Measure Unit | Average | St.Dev. |
---|---|---|---|
Harvested surface | ha | 24 | - |
Number of plants | N m−2 | 424 | 176 |
Plant height | cm | 60 | 8 |
Straw weight | Mg ha−1 FM | 5.10 | 1.15 |
Straw moisture content | % | 44.40 | 6.21 |
Siliques weight | Mg ha−1 FM | 1.06 | 0.25 |
Siliques moisture content | % | 9.91 | 0.49 |
Potential seed yield (PSY) | Mg ha−1 FM | 1.17 | 0.18 |
Seed moisture content | % | 6.45 | 0.40 |
1000-seed weight | g | 1.04 | 0.07 |
Seed bulk density | kg m−3 | 687.82 | 13.60 |
Parameter | Measure Unit | Average | St.Dev. |
---|---|---|---|
Working speed | km h−1 | 6.57 | 1.00 |
Theoretical Field Capacity (TFC) | ha h−1 | 4.34 | 0.66 |
Effective Field Capacity (EFC) | ha h−1 | 4.22 | 0.63 |
Field Efficiency (FE) | % | 97.24 | 0.41 |
Material capacity (MC) | Mg h−1 | 4.66 | 0.69 |
Parameter | Average | |
---|---|---|
Mg ha−1 FM | % | |
Area A (CSL) | 0.036 ± 0.006 b | 3.08 ± 0.54 |
Area B (SS+ISL) | 0.057 ± 0.028 a | 4.87 ± 2.35 |
Total seed loss (TSL) | 0.093 ± 0.033 | 7.95 ± 0.28 |
Potential Seed Yield (PSY) | 1.17 ± 0.18 | |
Effective Seed Yield (ESY) | 1.10 * | |
Effective seed loss (ESL) | 0.07 * | 5.98 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanoni, W.; Latterini, F.; Ruiz, J.P.; Bergonzoli, S.; Palmieri, N.; Pari, L. Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss. Sustainability 2021, 13, 195. https://doi.org/10.3390/su13010195
Stefanoni W, Latterini F, Ruiz JP, Bergonzoli S, Palmieri N, Pari L. Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss. Sustainability. 2021; 13(1):195. https://doi.org/10.3390/su13010195
Chicago/Turabian StyleStefanoni, Walter, Francesco Latterini, Javier Prieto Ruiz, Simone Bergonzoli, Nadia Palmieri, and Luigi Pari. 2021. "Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss" Sustainability 13, no. 1: 195. https://doi.org/10.3390/su13010195
APA StyleStefanoni, W., Latterini, F., Ruiz, J. P., Bergonzoli, S., Palmieri, N., & Pari, L. (2021). Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss. Sustainability, 13(1), 195. https://doi.org/10.3390/su13010195