Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pond
The Flexible Water Storage System
2.2. LCA and LCC Methods
2.2.1. Boundary of the System for the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Analysis
2.2.2. Life Cycle Inventory Analysis
2.2.3. Life Cycle Impact Assessment
2.2.4. Economic Assessment
3. Results and Discussion
3.1. Environmental Assessment
3.2. The Economic Aspects and Ecoefficiency Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency. Water Scarcity and Drought in the European Union; Rep. KH-30-09-180-EN-D; European Environment Agency: København, Denmark, 2010; p. 6. [Google Scholar]
- Benabdelouahab, T.; Gadouali, F.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Salhi, A. Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region. Theor. Appl. Climatol. 2020, 141, 309–320. [Google Scholar] [CrossRef]
- Changming, L.; Jingjie, Y.; Kendy, E. Groundwater Exploitation and Its Impact on the Environment in the North China Plain. Water Int. 2001, 26, 265–272. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. CRC. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [Google Scholar] [CrossRef]
- Uribe, I.O.; Mosquera-Corral, A.; Rodicio, J.L.; Esplugas, S. Advanced technologies for water treatment and reuse. AIChE 2015, 61, 3146–3158. [Google Scholar] [CrossRef]
- Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M.S. Urban water reuse: A triple bottom line assessment framework and review. Sustain. Cities Soc. 2016, 27, 448–456. [Google Scholar] [CrossRef]
- Dominguez, S.; Laso, J.; Margallo, M.; Aldaco, R.; Rivero, M.J.; Irabien, Á.; Ortiz, I. LCA of greywater management within a water circular economy restorative thinking framework. Sci. Total Environ. 2018, 621, 1047–1056. [Google Scholar] [CrossRef]
- Yan, X.; Ward, S.; Butler, D.; Daly, B. Performance assessment and life cycle analysis of potable water production from harvested rainwater by a decentralized system. J. Clean. Prod. 2018, 172, 2167–2173. [Google Scholar] [CrossRef] [Green Version]
- Krishna, R.S.; Mishra, J.; Ighalo, J.O. Rising Demand for Rain Water Harvesting System in the World: A Case Study of Joda Town, India. World Sci. News 2020, 146, 47–59. [Google Scholar]
- Karim, M.R.; Bashar, M.Z.I.; Imteaz, M.A. Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resour. Conserv. Recycl. 2015, 104, 61–67. [Google Scholar] [CrossRef]
- Jiang, Z.-y.; Li, X.-y.; Ma, Y.-j. Water and Energy Conservation of Rainwater Harvesting System in the Loess Plateau of China. J. Integr. Agric. 2013, 12, 1389–1395. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Sojka, S. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Qi, Q.; Marwa, J.; Mwamila, T.B.; Gwenzi, W.; Noubactep, C. Making rainwater harvesting a key solution for water management: The universality of the Kilimanjaro Concept. Sustainability 2019, 11, 5606. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Hussain, R.; Wu, R.-S.; Abbas, T. Rainwater harvesting potential and utilization for artificial recharge of groundwater using recharge wells. Processes 2019, 7, 623. [Google Scholar] [CrossRef] [Green Version]
- Kisakye, V.; Van der Bruggen, B. The viability of artificial surface treatments as a mechanism for domestic rain water harvesting. Phys. Chem. Earth Parts A/B/C 2018, 107, 8–18. [Google Scholar] [CrossRef]
- Vialle, C.; Busset, G.; Tanfin, L.; Montrejaud-Vignoles, M.; Huau, M.C.; Sablayrolles, C. Environmental analysis of a domestic rainwater harvesting system: A case study in France. Resour. Conserv. Recycl. 2015, 102, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Morales-Pinzón, T.; Lurueña, R.; Rieradevall, J.; Gasol, C.M.; Gabarrell, X. Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain. Resour. Conserv. Recycl. 2012, 69, 130–140. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO (International Organization for Standardization). 14044:2006—Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO (International Organization for Standardization). 15686-5:2017—Buildings and Constructed Assets—Service Life Planning—Part 5: Life-Cycle Costing; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Gluch, P.; Baumann, H. The life cycle costing (LCC) approach: A conceptual discussion of its usefulness for environmental decision-making. Build. Environ. 2004, 39, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, A.L.; Von Blottnitz, H.; Brent, A.C.; Dennis, J.S.; Scott, S.A. Global warming potential and fossil-energy requirements of biodiesel production scenarios in South Africa. Energy Fuels 2010, 24, 2489–2499. [Google Scholar] [CrossRef]
- Mohamad, R.S.; Verrastro, V.; Cardone, G.; Bteich, M.R.; Favia, M.; Moretti, M.; Roma, R. Optimization of organic and conventional olive agricultural practices from a Life Cycle Assessment and Life Cycle Costing perspectives. J. Clean. Prod. 2014, 70, 78–89. [Google Scholar] [CrossRef]
- Buratti, C.; Fantozzi, F. Life cycle assessment of biomass production: Development of a methodology to improve the environmental indicators and testing with fiber sorghum energy crop. Biomass Bioenergy 2010, 34, 1513–1522. [Google Scholar] [CrossRef]
- Figueiredo, F.; Castanheira, E.G.; Freire, F. Life-cycle assessment of irrigated and rainfed sunflower addressing uncertainty and land use change scenarios. J. Clean. Prod. 2017, 140, 436–444. [Google Scholar] [CrossRef]
- Romeiko, X.X. A comparative life cycle assessment of crop systems irrigated with the groundwater and reclaimedwater in Northern China. Sustainability 2019, 11, 2743. [Google Scholar] [CrossRef] [Green Version]
- Eshel, G.; Martin, P.A. Diet, energy, and global warming. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- WFP. Water Harvesting in Practice: Towards Building Resilient Livelihoods in Semi-Arid Zones. In Field Practitioners Guide No. 2. Rural Resilience; World Food Programme: Nairobi, Kenya, 2018. [Google Scholar]
- Philp, M.; Mcmahon, J.; Heyenga, S.; Marinoni, O.; Jenkins, G.; Maheepala, S.; Greenway, M. Review of Stormwater Harvesting Practices; Urban Water Security Research Alliance Technical Report No. 9; The Urban Water Security Research Alliance: City East, QLD, Australia, 2008; Available online: https://publications.csiro.au/rpr/download?pid=procite:6057d2b6-42b7-4d03-9fd7-ddd451b9d269&dsid=DS1 (accessed on 4 March 2021).
- Avnimelech, Y. Control of microbial activity in aquaculture systems: Active suspension ponds. World Aquac. Rouge 2003, 34, 19–21. [Google Scholar]
- Ghimire, S.R.; Johnston, J.M. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale. Elementa 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigamonti, L.; Borghi, G.; Martignon, G.; Grosso, M. Life cycle costing of energy recovery from solid recovered fuel produced in MBT plants in Italy. Waste Manag. 2019, 99, 154–162. [Google Scholar] [CrossRef]
- Brandão, M.; Clift, R.; Basson, L. A life-cycle approach to characterising environmental and economic impacts of multifunctional land-use systems: An integrated assessment in the UK. Sustainability 2010, 2, 3747–3776. [Google Scholar] [CrossRef] [Green Version]
- Labaronne-Citaf Website. Available online: labaronne-citaf.com (accessed on 10 January 2021).
- Leffio, D. Personal comunication. 2021. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008. A Life Cycle Impact Assessment Method which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministerie van VROM Rijnstraat: Den Haag, The Netherlands, 2009; Volume 1, pp. 1–126. [Google Scholar]
- Palmieri, N.; Suardi, A.; Alfano, V.; Pari, L. Circular economy model: Insights from a case study in south Italy. Sustainability 2020, 12, 3466. [Google Scholar] [CrossRef] [Green Version]
- Pari, L.; Suardi, A.; Stefanoni, W.; Latterini, F.; Palmieri, N. Environmental and economic assessment of castor oil supply chain: A case study. Sustainability 2020, 12, 6339. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-efficiency in measuring the sustainable production of agricultural crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, N.; Suardi, A.; Latterini, F.; Pari, L. The eucalyptus firewood: Understanding consumers’ behaviour and motivations. Agriculture 2020, 10, 512. [Google Scholar] [CrossRef]
- Palmieri, N.; Suardi, A.; Pari, L. Italian consumers’ willingness to pay for eucalyptus firewood. Sustainability 2020, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.L.C.; Hunt, W.F. Predicting the carbon footprint of urban stormwater infrastructure. Ecol. Eng. 2013, 58, 44–51. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Garland, J.; Edelen, A.; Ma, X.C.; Jahne, M. Life cycle assessment of a rainwater harvesting system compared with an AC condensate harvesting system. Resour. Conserv. Recycl. 2019, 146, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Morales-Pinzón, T.; Rieradevall, J.; Gasol, C.M.; Gabarrell, X. Modelling for economic cost and environmental analysis of rainwater harvesting systems. J. Clean. Prod. 2015, 87, 613–626. [Google Scholar] [CrossRef]
- Devkota, J.; Schlachter, H.; Apul, D. Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J. Clean. Prod. 2015, 95, 311–321. [Google Scholar] [CrossRef]
- Arrivas Bajardi, C.; Fiore, M.; Breedveld, L.; Giaimo, L.; Notaro, A. Certifcazione Ambientale di Prodotti Agroalimentari LCA Dell’olio D’oliva; 2009. Available online: http://www.to-be.it/wp-content/uploads/2015/07/LCA-dellolio-doliva.pdf (accessed on 4 March 2021).
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Hawkins, T.R. Life Cycle Assessment of Domestic and Agricultural Rainwater Harvesting Systems. Environ. Sci. Technol. 2014, 48, 1–27. [Google Scholar] [CrossRef]
- Lasage, R.; Verburg, P.H. Evaluation of small scale water harvesting techniques for semi-arid environments. J. Arid Environ. 2015, 118, 48–57. [Google Scholar] [CrossRef]
- Deshmukh, G.; Hardaha, M.K.; Ahirwar, S.K. A case study on rain water harvesting technologies for tribal area of Madhya Pradesh, India. Plant Arch. 2016, 16, 151–156. [Google Scholar]
- Reddy, K.S.; Ricart, S.; Maruthi, V.; Pankaj, P.K.; Krishna, T.S.; Reddy, A.A. Economic Assessment of Water Harvesting Plus Supplemental Irrigation for Improving Water Productivity of a Pulse–Cotton Based Integrated Farming System in Telangana, India. Irrig. Drain. 2020, 69, 25–37. [Google Scholar] [CrossRef]
- Kumar, S.; Ramilan, T.; Ramarao, C.A.; Rao, C.S.; Whitbread, A. Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants. Agric. Water Manag. 2016, 176, 55–66. [Google Scholar] [CrossRef] [Green Version]
Item | Unit | Quantity | Unitary Weight (kg) | Total Weight (kg) | ||
---|---|---|---|---|---|---|
Polyvinyl Chloride | Metal | Polyvinyl Chloride | Metal | |||
Loading system | ||||||
Electric water pump | (n) | 1.00 | - | 7.02 | 7.02 | |
Electric cable | (m) | 30.00 | 0.11 | 0.07 | 3.24 | 2.16 |
Socket | (n) | 1.00 | 0.12 | 0.06 | 0.12 | 0.06 |
Pipe connection-equal elbow | (n) | 2.00 | 0.18 | 0.35 | ||
Pipe connection-adapter | (n) | 4.00 | 0.15 | 0.60 | ||
Anti-cross flow | (n) | 1.00 | 0.16 | 0.16 | ||
Ball valve | (n) | 2.00 | 0.18 | 0.35 | ||
Pipe | (m) | 330.00 | 0.31 | 102.30 | ||
Pond | ||||||
Double PVC layer | (m2) | 477.56 | 2.35 | 1122.27 | ||
Fuel | (n) | 328.1 | 328.10 | |||
Irrigation system | ||||||
Electric water pump | (n) | 1.00 | 7.02 | 7.02 | ||
Electric cable | (m) | 330.00 | 0.11 | 0.07 | 35.64 | 23.76 |
Pipe connection-equal elbow | (n) | 2.00 | 0.13 | 0.26 | ||
Pipe connection-adapter | (n) | 4.00 | 0.11 | 0.45 | ||
Ball valve | (n) | 2.00 | 0.13 | 0.26 | ||
Pipe | (n) | 400.00 | 0.23 | 93.00 | ||
Dripper | (n) | 135.00 | 0.02 | 2.70 | ||
Total | 1689.79 | 40.01 |
Item | Unit | Quantity | Unitary Weight (kg) | Total Weight (kg) | ||
---|---|---|---|---|---|---|
Polyvinyl Chloride | Metal | Polyvinyl Chloride | Metal | |||
Loading system | ||||||
Electric water pump | (n) | 1.00 | 7.02 | 7.02 | ||
Electric cable | (m) | 30.00 | 0.11 | 0.07 | 3.24 | 2.16 |
Socket | (n) | 1.00 | 0.12 | 0.06 | 0.12 | 0.06 |
Pipe connection-equal elbow | (n) | 2.00 | 0.18 | 0.35 | ||
Pipe connection-adapter | (n) | 4.00 | 0.15 | 0.60 | ||
Anti-cross flow | (n) | 1.00 | 0.16 | 0.16 | ||
Ball valve | (n) | 2.00 | 0.18 | 0.35 | ||
Pipe | (m) | 330.00 | 0.31 | 102.30 | ||
FWSS | ||||||
Plastic fabric HPVi09 | (m2) | 678.84 | 0.93 | 631.32 | ||
Pipe connection-reducer | (n) | 2.00 | 0.30 | 0.60 | ||
Lid | (n) | 1.00 | 0.35 | 0.35 | ||
Blow-off valve | (n) | 1.00 | 0.15 | 0.29 | 0.15 | 0.29 |
Ball valve | (n) | 4.00 | 0.80 | 3.20 | ||
Irrigation system | ||||||
Electric water pump | (n) | 1.00 | 7.02 | 7.02 | ||
Electric cable | (m) | 330.00 | 0.11 | 0.07 | 35.64 | 23.76 |
Pipe connection-equal elbow | (n) | 2.00 | 0.13 | 0.26 | ||
Pipe connection-adapter | (n) | 4.00 | 0.11 | 0.45 | ||
Ball valve | (n) | 2.00 | 0.13 | 0.26 | ||
Pipe | (n) | 400.00 | 0.23 | 93.00 | ||
Dripper | (n) | 135.00 | 0.02 | 2.70 | ||
Total | 871.84 | 43.50 |
Data | PVC (kg) | Iron (kg) | Diesel (kg) |
---|---|---|---|
Loading system | 107.11 | 9.23 | |
Pond | 1122.27 | 278.89 | |
Irrigation system | 132.31 | 30.77 |
Data | PVC (kg) | Iron (kg) | Diesel (kg) |
---|---|---|---|
Loading system | 107.11 | 9.23 | |
FWSS | 632.42 | 3.49 | |
Irrigation system | 132.31 | 30.77 |
Data | Total Costs (Euro) |
---|---|
Loading system | 669.47 |
Pond | 6356.93 |
Irrigation system | 1140.37 |
Total | 8166.77 |
Data | Total Costs (Euro) |
---|---|
Loading system | 669.47 |
FWSS | 4968.00 |
Irrigation system | 1140.37 |
Total | 6777.84 |
Data | Total Costs (€ per m3) |
---|---|
Pond system | 20.41 |
FWSS | 16.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pari, L.; Suardi, A.; Stefanoni, W.; Latterini, F.; Palmieri, N. Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture. Sustainability 2021, 13, 3871. https://doi.org/10.3390/su13073871
Pari L, Suardi A, Stefanoni W, Latterini F, Palmieri N. Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture. Sustainability. 2021; 13(7):3871. https://doi.org/10.3390/su13073871
Chicago/Turabian StylePari, Luigi, Alessandro Suardi, Walter Stefanoni, Francesco Latterini, and Nadia Palmieri. 2021. "Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture" Sustainability 13, no. 7: 3871. https://doi.org/10.3390/su13073871
APA StylePari, L., Suardi, A., Stefanoni, W., Latterini, F., & Palmieri, N. (2021). Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture. Sustainability, 13(7), 3871. https://doi.org/10.3390/su13073871