Remediating Agricultural Legacy Nutrient Loads in the Baltic Sea Region
Abstract
:1. Introduction
- Comparing amounts and removal costs of legacy nutrient loads to those of reducing current emissions as well as to public funding available in order to support the adequate integration of legacy nutrient loads in future eutrophication remediation strategies
- Substantiating the discussion on preventing emissions vs remediating environmental damages with a comparison of long-term damage costs of agricultural nutrient emissions, the economic benefits generated by the sector and the costs of agricultural emission prevention
2. Materials and Methods
2.1. Description of the Baltic Sea Region
2.2. Quantifying Agricultural Legacy Nutrient Loads
2.2.1. Nutrients Present in the Sea
2.2.2. Nutrients Present on Land
2.3. Monetising Impacts of Agricultural Legacy Nutrient Loads
2.4. Current Output Created by Agriculture
3. Results and Discussion
3.1. Agricultural Legacy Nutrient Loads in the Baltic Sea Region
3.2. Costs of Remediating Agricultural Legacy Nutrient Loads
3.3. Remediation Scenario
- Abatement will only be undertaken in regions and for measures for which large-scale estimates are currently available
- Costs and abatement potentials will not significantly differ from predictions made by upscaling of pilot studies
- Environmental sustainability of abatement measures (especially deep-water oxygenation) can be confirmed in future studies
- The establishment of an industrial sector processing Baltic Sea mussels to fertiliser or feed will be successful
- Mussel farms can be established in the most suitable locations (predominately near shore)
- Socio-economic and environmental conditions in the Baltic Sea region will remain stable over a long period (up to 500 years)
3.4. Putting Remediation Costs into Perspective
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Environmental Agency. Nutrient Enrichment and Eutrophication in Europe’s Seas. Moving Towards a Healthy Marine Environment; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- United Nations. The Sustainable Development Goals Report 2018; United Nations Publications: New York, NY, USA, 2018. [Google Scholar]
- HELCOM. HELCOM Thematic Assessment of Eutrophication 2011–2016. Baltic Sea Environment Proceedings No.156. 2018. Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 30 March 2021).
- HELCOM. State of the Baltic Sea—Second HELCOM Holistic Assessment 2011–2016. Baltic Sea Environment. 2018. Available online: www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 30 March 2021).
- HELCOM. Baltic Sea Action Plan. Reaching Good Environmental Status for the Baltic Sea. Available online: https://helcom.fi/baltic-sea-action-plan/ (accessed on 2 December 2020).
- EUSBSR. EU Strategy for the Baltic Sea Region. 2020. Available online: https://www.balticsea-region-strategy.eu/ (accessed on 2 December 2020).
- Ollikainen, M.; Hasler, B.; Elofsson, K.; Iho, A.; Andersen, H.E.; Czajkowski, M.; Peterson, K. Towards the Baltic Sea Socioeconomic Action Plan. Ambio 2019, 48, 1377–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barquet, K.; Rosemarin, A.; Järnberg, L.; Joshi, S.; Leader, E.; Olsson, O.; Sindhöj, E. Mission Blue—Exploring Circular Interventions in the Baltic Sea Region. Bonus Return. 2020. Available online: https://www.bonusreturn.eu/mission-blue-exploring-circular-interventions-in-the-baltic-sea-region/ (accessed on 30 March 2021).
- European Commission. The European Green Deal, Brussels. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 30 March 2021).
- European Commission. Missions in Horizon Europe. Available online: https://ec.europa.eu/info/horizon-europe/missions-horizon-europe_en (accessed on 2 December 2020).
- European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 2 December 2020).
- Geitzenauer, M.; Blondet, M.; de Koning, J.; Ferranti, F.; Sotirov, M.; Weiss, G.; Winkel, G. The challenge of financing the implementation of Natura 2000—Empirical evidence from six European Union Member States. For. Policy Econ. 2017, 82, 3–13. [Google Scholar] [CrossRef]
- BalticSTERN Secretariat. The Baltic Sea—Our Common Treasure. Economics of Saving the Sea; (USAB Stockholm); Swedish Agency for Marine and Water Management: Göteborg, Sweden, 2013. [Google Scholar]
- Ahlvik, L.; Ekholm, P.; Hyytiäninen, K.; Pitkänen, H. An economic-ecological model to evaluate impacts of nutrient abatement in the Baltic Sea. Environ. Model. Softw. 2014, 55, 164–175. [Google Scholar] [CrossRef]
- Wulff, F.; Humborg, C.; Andersen, H.E.; Blicher-Mathiesen, G.; Czajkowski, M.; Elofsson, K.; Fonnesbech-Wulff, A.; Hasler, B.; Hong, B.; Jansons, V.; et al. Reduction of Baltic Sea Nutrient Inputs and Allocationof Abatement Costs Within the Baltic Sea Catchment. Ambio 2014, 43, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Dahlgren, S.; Källström, N.; Lind, F.; Morin, M.; Mrozowski, T.; Seppä, T.; Wallin, M. Restoring Waters in the Baltic Sea Region. In A Strategy for Municipalities and Local Governments to Capture Economic and Environmental Benefits; The Boston Consulting Group: Stockholm, Sweden, 2015. [Google Scholar]
- Allin, A.; Schernewski, G.; Friedland, R.; Neumann, T.; Radtke, H. Climate change effects on denitrification and associated avoidance costs in three Baltic river basin—Coastal sea systems. J. Coast. Conserv. 2017, 21, 561–569. [Google Scholar] [CrossRef]
- Savchuk, O. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 2018, 5, 95. [Google Scholar] [CrossRef]
- Gustafsson, E.; Savchuk, O.; Gustafsson, B.; Müller-Karulis, B. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea. Biogeochemistry 2017, 134, 301–317. [Google Scholar] [CrossRef] [Green Version]
- McCrackin, M.; Muller-Karulis, B.; Gustafsson, B.; Howarth, R.; Humborg, C.; Svanbäck, A.; Swaney, D. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Glob. Biogeochem. Cycles 2018, 32, 1107–1122. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Räike, A.; Oblomokova, N.; Svendsen, L.M.; Kaspersson, R.; Haapaniemi, J.; Eklund, K.; Brynska, W.; Hytteborn, J.; Tornbjerg, H.; Kotilainen, P.; et al. Background information on the Baltic Sea catchment area for the Sixth Baltic Sea Pollution load compilation (PLC-6). HELCOM. 2019. Available online: https://helcom.fi/helcom-at-work/projects/plc-6/ (accessed on 30 March 2021).
- Eurostat. Main Farm Land Use by NUTS 2 Regions [ef_lus_main]. 2020. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_lus_main&lang=en (accessed on 29 March 2020).
- Eurostat. Main Livestock Indicators by NUTS 2 Regions [ef_lsk_main]. 2020. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_lsk_main&lang=en (accessed on 29 March 2020).
- Knoema. Kaliningrad Region. Available online: https://knoema.com/atlas/Russian-Federation/Kaliningrad-Region (accessed on 14 December 2020).
- Knoema. Karelia, Republic of. Available online: https://knoema.com/atlas/Russian-Federation/St-Petersburg-City (accessed on 14 December 2020).
- Knoema. Tver Region. Available online: https://knoema.com/atlas/Russian-Federation/Tver-Region (accessed on 14 December 2020).
- Knoema. Smolensk Region. Available online: https://knoema.com/atlas/Russian-Federation/Smolensk-Region/ (accessed on 14 December 2020).
- Knoema. Pskov Region. Available online: https://knoema.com/atlas/Russian-Federation/Pskov-Region (accessed on 14 December 2020).
- Knoema. Novgorod Region. Available online: https://knoema.com/atlas/Russian-Federation/Novgorod-Region (accessed on 14 December 2020).
- Knoema. Leningrad Region. Available online: https://knoema.com/atlas/Russian-Federation/Leningrad-Region (accessed on 14 December 2020).
- Knoema. Belarus. Available online: https://knoema.com/atlas/Belarus (accessed on 14 December 2020).
- HELCOM. The Sixth Pollution Load Compilation (PLC-6). HELCOM. 2018. Available online: https://helcom.fi/helcom-at-work/projects/plc-6/ (accessed on 30 March 2021).
- Radtke, H.; Neumann, T.; Voss, M.; Fennel, W. Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea. J. Geophys. Res. 2012, 117, C09024. [Google Scholar] [CrossRef]
- Svendsen, L.; Gustafsson, B. Waterborne Nitrogen and Phosphorus Inputs and Water Flow to the Baltic Sea 1995–2017. HELCOM Baltic Sea Environment Fact Sheet 2019. 2019. Available online: https://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/waterborne-nitrogen-and-phosphorus-inputs (accessed on 1 July 2020).
- Gauss, M.; Bartnicki, J. Nitrogen Emissions to the Air in the Baltic Sea Area. HELCOM Baltic Sea Environmental Fact Sheet 2018. 2018. Available online: https://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/nitrogen-emissions-to-the-air-in-the-baltic-sea-area/ (accessed on 3 July 2019).
- Gauss, M.; Bartnicki, J.; Klein, H. Atmospheric Nitrogen Depositions to the Baltic Sea 1995–2016. HELCOM Baltic Sea Environmental Fact Sheet 2018. 2018. Available online: http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/nitrogen-atmospheric-deposition-to-the-baltic-sea (accessed on 1 July 2020).
- HELCOM. Updated Fifth Pollution Load Compilation (PLC-5.5). Baltic Sea Environmental Proceeding No. 145. HELCOM. 2015. Available online: https://helcom.fi/baltic-sea-trends/pollution-load-compilations/ (accessed on 30 March 2021).
- Savchuk, O.; Eilola, K.; Gustaffson, B.; Medina, M.; Ruoho-Airola, T. Long-Term Reconstruction of Nutrient Loads to the Baltic Sea, 1850–2006; Baltic Nest Institute: Stockholm, Sweden, 2012. [Google Scholar]
- HELCOM. The Review of More Specific Targets to Reach the Goal Set Up in the 1988/1998 Ministerial Declarations Regarding Nutrients. Baltic Sea Environmental Proceeding No. 89. HELCOM. 2003. Available online: http://archive.iwlearn.net/helcom.fi/publications/bsep/en_GB/bseplist/index.html (accessed on 30 March 2021).
- HELCOM. The Fifth Baltic Sea Pollution Load Compilation (PLC-5). Baltic Sea Environmental Proceeding No. 128. HELCOM. 2011. Available online: https://helcom.fi/baltic-sea-trends/pollution-load-compilations/ (accessed on 30 March 2021).
- HELCOM. Sources and Pathways of Nutrients to the Baltic Sea. Baltic Sea Environmental Proceedings No. 153. HELCOM. 2018. Available online: https://helcom.fi/baltic-sea-trends/pollution-load-compilations/ (accessed on 30 March 2021).
- Gustafsson, B.; Stockholm University, Stockholm, Sweden. Personal communication, 2020.
- Bouwman, L.; Goldewijk, K.K.; van der Hoek, K.; Beusen, A.; van Vuuren, D.; Willems, J.; Rufino, M.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Sagebiel, J.; Schwartz, C.; Rhozyel, M.; Rajmis, S.; Hirschfeld, J. Economic valuation of Baltic marine ecosystem services: Blind spots and limited consistency. ICES J. Mar. Sci. 2016, 73, 991–1003. [Google Scholar] [CrossRef] [Green Version]
- Baltic EcoMussels. The Baltic EcoMussels Project. Final Report. Baltic EcoMussels. 2013. Available online: http://projects.centralbaltic.eu/project/470-baltic-ecomussel (accessed on 30 March 2021).
- NutriTrade. Pilot Mussel Deliverable 4.9.1 Final Report. NutriTrade—A Flagship Project of the EU Baltic Sea Region Strategy. 2018. Available online: https://nutritradebaltic.eu/materials/ (accessed on 30 March 2021).
- Schultz-Zehden, A.; Steele, A.; Weig, B. How to turn Ecosystem Payments to Baltic Mussel Farms into reality? Baltic Blue Growth. 2019. Available online: https://www.submariner-network.eu/balticbluegrowth (accessed on 30 March 2021).
- Petersen, J.K.; Taylor, D.; Bergström, P.; Buer, A.-L.; Darecki, M.; Filippelli, R.; Gren, I.-M.; Hasler, B.; Holbach, A.; Nielsen, P. Policy Guidelines for Implementation of Mussel Cultivation as a Mitigation Measure for Coastal Eutrophication in the Western Baltic Sea; DTUAqua-Rapport, No. 362-2020; DTU Aqua: Lyngby, Denmark, 2020. [Google Scholar]
- Mäki, M. Pilot Fish–Challenges, Opportunities, Suitability for Nutrient Trading. D.T5.13.1 Final Report. NutriTrade—A Flagship Project of the EU Baltic Sea Region Strategy. 2018. Available online: https://nutritradebaltic.eu/materials/ (accessed on 30 March 2021).
- Schultz-Zehden, A.; Matczak, M. Submariner Compendium. An Assessment of Innovative and Sustainable Uses of Baltic Marine Resources; Maritime Institute in Gdansk: Gdansk, Poland, 2012.
- Olsson, B.; Ek, M.; Norén, F.; Thörn, P.; Tekie, H.; Lindblad, M.; Hennlock, M.; Stigson, P.; Röttorp, J.; Fortkamp, U.; et al. Full-Scale Site Solution of Phosphorous Retrieval from Biowaste. IVL Report B2151. IVL, 2013. Available online: https://www.ivl.se/english/ivl/publications.html (accessed on 30 March 2021).
- Simonsson, B. Density sorting dredging as an approach to speed up Baltic restoration. In Internal Load of Plant Nutrients in the Baltic Sea; First Meeting of the Working Group of Pressures from the Baltic Sea Catchment Area; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Rantajärvi, E.; PROPPEN. Controlling Benthic Release of Phosphorus in Different Baltic Sea Scales; Final Report on the result of the PROPPEN Project (802-0301-08) to the Swedish Environmental Protection Agency, Formas and VINNOVA; PROPPEN: Helsinki, Finland, 2012. [Google Scholar]
- Stigebrandt, A. Oxygenation of anoxic bottoms as a method. In Internal Load of Plant Nutrients in the Baltic Sea; First Meeting of the Working Group of Pressures from the Baltic Sea Catchment Area; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Stigebrandt, A.; Liljebladh, B.; de Brabandere, L.; Forth, M.; Granmo, Å.; Hall, P.; Hammar, J.; Hansson, D.; Kononets, M.; Magnusson, M.; et al. An Experiment with Forced Oxygenation of the Deepwater of the Anoxic by Fjord, Western Sweden. Ambio 2015, 44, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Rydin, E.; Kumblad, L. Anoxic coastal sediments bind phosphorus after Al-treatment. In Internal Load of Plant Nutrients in the Baltic Sea; First Meeting of the Working Group of Pressures from the Baltic Sea Catchment Area; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Kumblad, L.; Rydin, E. Effective Measures Against Eutrophication—A Story About Regaining Good Ecological Status in Coastal Areas. BalticSea2020. 2018. Available online: http://www.balticsea2020.org/english/alla-projekt/overgodning/eutrophication-ongoing-projects/54-living-coast (accessed on 30 March 2021).
- Blomqvist, S. Permanent inactivation of phosphorus in Baltic sediments. In Internal Load of Plant Nutrients in the Baltic Sea; First Meeting of the Working Group of Pressures from the Baltic Sea Catchment Area; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Pakalniete, K.; Krumina, A. Economic Analysis to Support Setting Effective Measures for Reaching Environmental Targets of Water Bodies (T2.3),” Project “Waterbodies Without Borders” (EstLat 66). 2020. Available online: https://wbwb.eu/results/ (accessed on 30 March 2021).
- Ollikainen, M.; Ekholm, P.; Punttila, E.; Ala-Harja, V.; Riihimäki, J.; Puroila, S.; Kosenius, A.-K.; Iho, A. Gypsum Amendment of Fields as a Water Protection Measure in Agriculture. SAVE. 2018. Available online: https://blogs.helsinki.fi/save-kipsihanke/materials/?lang=en (accessed on 30 March 2021).
- NutriTrade. Gypsum Amendment of Fields: A Cost-Efficient Measure for the Baltic Sea Water Quality Benefits and Feasibility for Large Scale Use in Agriculture. NutriTrade. 2018. Available online: https://nutritradebaltic.eu/materials/ (accessed on 30 March 2021).
- Vahanen Environment, O.Y. Speeding up the Ecological Recovery of the Baltic Sea. Vahanen Environment OY. 2018. Available online: https://vahanen.com/en/references/speeding-ecological-recovery-baltic-sea/ (accessed on 30 March 2021).
- Conley, D. Save the Baltic Sea. Nature 2012, 486, 463–464. [Google Scholar] [CrossRef]
- Kotta, J.; Futter, M.; Kaasik, A.; Liversage, K.; Rätsep, M.; Barboza, F.; Bergström, L.; Bergström, P.; Bobsien, I.; Díaz, E.; et al. Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Sci. Total Environ. 2020, 709, 136144. [Google Scholar] [CrossRef]
- SUBMARINER Network Mussels Working Group. Mussel Farming in the Baltic Sea as an Environmental Measure; SUBMARINER Network for Blue Growth EEIG: Berlin, Germany, 2019. [Google Scholar]
- Eurostat. National Accounts Aggregates by Industry (up to NACE A*64) [nama_10_a64]. 2020. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10_a64&lang=en (accessed on 11 December 2020).
- Statistische Ämter des Bundes und der Länder. Bruttowertschöpfung der Landwirtschaft—in jeweiligen Preisen—in Deutschland 1991 bis 2018 nach Bundesländern. May 2020. Available online: https://www.statistik-bw.de/LGR/DE_WS_LR.asp (accessed on 14 December 2020).
- Maix. Blank Map of Europe Cropped. 2007. Available online: https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_cropped.svg (accessed on 30 March 2021).
- Moore, J.; Fu, W.; Primeau, F.; Britten, G.; Lindsay, K.; Long, M.; Doney, S.; Mahowald, N.; Hoffman, F.; Randerson, J. Sustained climate warming drives declining marine biological productivity. Science 2018, 359, 1139–1143. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, L.; Aumont, O.; Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Chang. Biol. 2019, 25, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, H.; Kullander, T. Plan and Cost Estimate for a Demonstrator—A Floating Wind Turbine Unit Equipped with Pumps for Oxygenation of the Deepwater, and Associated Patents and Immaterial Rights; BOX-WIN Technical Report No. 8; Göteborgs Universitet: Gothenburg, Sweden, 2013. [Google Scholar]
- Nutribute. Lisää kipsiä Vantaanjoelle! 2020. Available online: https://www.nutribute.org/campaigns/lisaa-kipsia-vantaanjoelle (accessed on 7 January 2021).
- Nutribute. Porvoonjoen kipsihanke. 2020. Available online: https://www.nutribute.org/campaigns/porvoonjoen-kipsihanke- (accessed on 7 January 2021).
- Nutribute. Vantaanjoen kipsihanke 2018. 2020. Available online: https://www.nutribute.org/campaigns/vantaanjoen-kipsihanke-2018 (accessed on 7 January 2021).
- Nutribute. Floating Island for Nutrient Removal. 2019. Available online: https://www.nutribute.org/campaigns/floating-island-for-nutrient-removal (accessed on 7 January 2021).
- Nutribute. Local Fishing at Archipelago Sea 2018. 2018. Available online: https://www.nutribute.org/campaigns/local-fishing-at-archipelago-sea-2018. (accessed on 7 January 2021).
- Nutribute. Local Fishing at Bothnian Sea 2018. 2018. Available online: https://www.nutribute.org/campaigns/local-fishing-at-bothnian-sea-2018. (accessed on 7 January 2021).
- Länsstyrelsen Västmanland. Åtgärder för god ekologisk status i ett jordbruksdominerat avrinningsområde—Exemplet Lillån. Report 2013:16. 2013. Available online: https://www.lansstyrelsen.se/vastmanland/tjanster/publikationer/2013/atgarder-for-god-ekologisk-status-i-ett-jordbruksdominerat-avrinningsomrade.html (accessed on 30 March 2021).
- Vaitiekūnienė, J.; Semėnienė, D. Costs and benefits of the proposed sea based measures -preliminary results of our review. In EUSBSR Workshop on Internal Nutrient Reserves; HELCOM: Gothenburg, Sweden, 2017. [Google Scholar]
- Setälä, J.; Airaksinen, S.; Lilja, J.; Raitaniemi, J. Pilottihanke vajaasti hyödynnetyn kalan käytön edistämiseksi: Loppuraportti; RKTL:n työraportteja 10/2012; Game and Fisheries Research Institute: Helsinki, Finland, 2012. [Google Scholar]
- Baresel, C.; Malmaeus, M.; Engqvist, A.; Skenhall, S.A.; Carstens, C.; Viktor, T.; Malm, J.; Claeson, L.; Cvetcovic, V.; Ekengren, Ö.; et al. WEBAP Vågdriven Syrepump för Östersjön; Report no. B2130; IVL: Stockholm, Sweden, 2013. [Google Scholar]
- SUBMARINER Network for Blue Growth EEIG. Mussels FAQs. Available online: https://www.submariner-network.eu/mussels-topic/2-uncategorised/589-mussels-faqs (accessed on 7 January 2021).
- Gren, I.-M.; Lindahl, O.; Lindqvist, M. Values of mussel farming for combating eutrophication: An application to the Baltic Sea. Environ. Eng 2009, 35, 935–945. [Google Scholar] [CrossRef]
- Minnhagen, S. Mussel farms as an environmental measure. In Internal Load of Plant Nutrients in the Baltic Sea; First Meeting of the Working Group of Pressures from the Baltic Sea Catchment Area; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Krost, P.; Rehm, S.; Kock, M.; Piker, L. Leitfaden für Nachhaltige Marine Aquakultur; CRM Coastal Research & Management Gbr: Kiel, Germany, 2011. [Google Scholar]
- Minnhagen, S. Mussel farming from a local holistic perspective—Can we profit from bad business? In Proceedings of the NutriTrade Workshop at KLSA, Policy Instruments for Blue Mussels—How should they be Designed to Maximize the Environmental Benefits. Stockholm, Sweden, 9 February 2018. [Google Scholar]
- Petersen, J.; Hasler, B.; Timmermann, K.; Nielsen, P.; Tørring, D.B.; Larsen, M.M.; Holmer, M. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 2014, 82, 137–143. [Google Scholar] [CrossRef]
- Taylor, D.; Petersen, J.; Buer, A.; Ritzenhofen, L.; Bergström, P.; Lindegarth, M. D3.1 Optimized Production of Mitigation Mussels (Technical Report No. D3.1). Bonus Optimus. 2019. Available online: https://www.bonus-optimus.eu/results/publications (accessed on 30 March 2021).
- Taylor, D.; Saurel, C.; Nielsen, P.; Petersen, J. Production Characteristics and Optimization of Mitigation Mussel Culture. Front. Mar. Sci. 2019, 6, 698. [Google Scholar] [CrossRef] [Green Version]
- Lubnow, F.S. Using Floating Wetland Islands to Reduce Nutrient Concentrations in Lake Ecosystems. Natl. Wetl. Newsl. 2014, 36, 11–12. [Google Scholar]
- Schultz-Zehden, A.; de Grunt, L.S. Mussel Farming in de Baltic Sea as an Environmental Measure—A Positive Outlook Based on New Data; SUBMARINER Network Mussels Working Group: Berlin, Germany, 2019. [Google Scholar]
- ORBICON. Interreg Baltic Sea Region. Baltic Blue Growth. Examples of two Danish Business Plans for Production of Environmental Mussels. 2019. Available online: https://www.submariner-network.eu/balticbluegrowth (accessed on 30 March 2021).
- Nguyen, T.T.; van Deurs, M.A.; Ravn-Jonsen, L.; Roth, E. Assessment of Financial Feasibility of Farming Blue Mussel in the Great Belt by the ‘Smart Farm System’; Department of Environmental and Business Economics (IME), University of Southern Denmark: Esbjerg, Denmark, 2013. [Google Scholar]
- Hjortberg, A. Blåmusselodling på Västkusten; Acquaculture Department Project; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003. [Google Scholar]
- Dansk Akvakultur. Kombi-Opdræt Kombinationsopdræt af Havbrugsfisk, Tang og Muslinger til Foder og Konsum; Dansk Akvakultur Report No. 2015-12; DK: Silkeborg, Denmark, 2015. [Google Scholar]
- Stigebrandt, A.; Andersson, A. The Eutrophication of the Baltic Sea has been Boosted and Perpetuated by a Major Internal Phosphorus Source. Front. Mar. Sci. 2020, 7, 572994. [Google Scholar] [CrossRef]
- Baltic Sea Restoration. On the Response of the Baltic Proper to Changes of the Total Phosphorus Supply. 2017. Available online: http://www.balticsearestoration.org/uncategorized/on-the-response-of-the-baltic-proper-to-changes-of-the-total-phosphorus-supply/ (accessed on 8 December 2020).
- Buer, A.-L.; Taylor, D.; Bergström, P.; Ritzenhofen, L.; Klemmstein, A. Nitrogen and Phosphorus Content in Blue Mussels (Mytilus spp.) Across the Baltic Sea. Front. Mar. Sci. 2020, 7, 705. [Google Scholar] [CrossRef]
- Holbach, A.; Maar, M.; Timmermann, K.; Taylor, D. A spatial model for nutrient mitigation potential of blue mussel farms in the western Baltic Sea. Sci. Total Environ. 2020, 736, 139624. [Google Scholar] [CrossRef]
- Ozolina, Z.; Kokaine, L. Socioeconomic Impact of Mussel Farming in Coastal Areas of Baltic Sea. Kurzeme Planning Region. Baltic Blue Growth. 2019. Available online: https://www.submariner-network.eu/balticbluegrowth (accessed on 30 March 2021).
- Ahtiainen, H.; Artell, J.; Czajkowski, M.; Hasler, B.; Hasselsträm, L.; Huhtala, A.; Meyerhoff, J.; Smart, J.; Söderqvist, T.; Alemu, M.; et al. Benefits of meeting nutrient reduction targets for the Baltic Sea—A contingent valuation study in the nine coastal states. J. Environ. Econ. Policy 2014, 3, 278–305. [Google Scholar] [CrossRef]
- European Union. Common Agricultural Policy: Key Graphs & Figures. Graph 5. Share of direct payments and total subsidies in agricultural factor income (2014-18 average). August 2020. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/cap-expenditure-graph5_en.pdf. (accessed on 7 January 2021).
- Gren, I. Costs and benefits from nutrient reductions to the Baltic Sea. Report 5877. The Swedish Environmental Protection Agency. 2008. Available online: http://www.naturvardsverket.se/Documents/publikationer/978-91-620-5877-7.pdf (accessed on 30 March 2021).
- McCrackin, M.L.; Gustafsson, B.G.; Hong, B.; Howarth, R.W.; Humborg, C.; Savchuk, O.P.; Svanbäck, A.; Swaney, D.P. Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture. Reg. Environ. Chang. 2018, 18, 1843–1854. [Google Scholar] [CrossRef] [Green Version]
Year | Mt N | %N | Mt P | %P | Reference |
---|---|---|---|---|---|
1985 | 0.019 | [40] | |||
1995 | 0.017 | [40] | |||
2000 | 0.016 | [40] | |||
2006 | 36–62% | 34–55% | [41] | ||
2014 | 0.18–0.23 | 0.005–0.006 | [42] |
Mt N | Mt P | |
---|---|---|
Nutrients in the sea | ||
total cumulative load | 2.003–9.792 | 0.868–3.254 |
cumulative agricultural load | 0.541–3.958 | 0.262–1.162 |
of this: riverine | 0.128–3.100 | 0.262–1.162 |
of this: deposition | 0.413–0.858 | 0 |
Nutrients on land | ||
cumulative agricultural load | neglected | 0.418–0.468 |
Measure | Extent | Potential Impact [Mt P/a] | Costs [€/kg P] | Repetition | Reference |
---|---|---|---|---|---|
Soil-based | |||||
Gypsum amendment | Finland (potential extension to Sweden, Denmark, Germany, and Poland) | 0.0002–0.0003 (0.001–0.002) | 55–86 | 5 years | [61,62] |
Structural liming 1 | Arable land with clay content >20% in Swedish North and South Baltic Sea Water Districts | 0.0001 | 222 | 10–30 years | [58] |
Sea-based | |||||
Aluminum treatment 1 | Swedish Coastal area of the Baltic Proper | 0.0005 | 89 | one-time | [58] |
Deep water oxygenation 2 | Baltic Proper | 0.060–0.092 | 2–4 | one-time | [72,97] |
Deep water oxygenation 3 | Bornholm Basin (BP) | 0.005–0.008 | 2–5 | one-time | [55,72] |
Deep water oxygenation 4 | Finnish parts of the Gulf of Finland | 0.00007–0.00012 | 28–48 | annual | [54] |
Deep water oxygenation | large-scale, not specified | not stated | 2–75 | not stated | [63] |
Blue mussel farming | Baltic Proper | 0.010 | not stated | 1–2 years | [65] |
Blue mussel farming | Bothnian Sea, Bothnia Bay, Gulf of Finland, Gulf of Riga | 0.001 | not stated | 1–2 years | [65] |
Region | €/kg P (Production Costs) | €/kg P (Required Subsidies) |
---|---|---|
Outer Baltic (Kattegat and Belt Sea) | 114 1–2846 | 0–2732 |
Central Baltic (Baltic Proper) | 250–5230 | 69–5041 |
Inner Baltic (Bothnian Bay, Bothnian Sea, Archipelago Sea, Gulf of Finland, Gulf of Riga) | 728–21,300 | 131–21,050 |
Measure | P Abatement [Mt] | N Abatement [Mt] | Costs [Billion €] |
---|---|---|---|
Deep water oxygenation | 0.060–0.092 | 0 | 0.184–4.500 |
Soil gypsum amendment | 0.145–0.183 | 0 | 0.010–0.013 |
Mussel farming | 0.406–1.425 | 5.275–18.511 | 32.422–111.455 |
Sea load | 0.170–1.102 | 2.210–14.315 | 14.055–86.311 |
Soil load | 0.236–0.323 | 3.065–4.196 | 18.367–25.144 |
Total | 0.680–1.630 | 5.275–18.511 1 | 32.616–115.967 |
Measure | Unit Abatement Cost [€/kg P] |
---|---|
Sea-based measures 1 | 0–21,050 |
Land-based agricultural measures | |
Buffer strips and wetlands | 50–6790 |
Catch crops | 150–9735 |
Fertiliser reduction | 1–10,920 |
Livestock reduction | 497–150,000 |
Combination 2 | 674–1762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanzer, J.; Hermann, R.; Hermann, L. Remediating Agricultural Legacy Nutrient Loads in the Baltic Sea Region. Sustainability 2021, 13, 3872. https://doi.org/10.3390/su13073872
Tanzer J, Hermann R, Hermann L. Remediating Agricultural Legacy Nutrient Loads in the Baltic Sea Region. Sustainability. 2021; 13(7):3872. https://doi.org/10.3390/su13073872
Chicago/Turabian StyleTanzer, Julia, Ralf Hermann, and Ludwig Hermann. 2021. "Remediating Agricultural Legacy Nutrient Loads in the Baltic Sea Region" Sustainability 13, no. 7: 3872. https://doi.org/10.3390/su13073872
APA StyleTanzer, J., Hermann, R., & Hermann, L. (2021). Remediating Agricultural Legacy Nutrient Loads in the Baltic Sea Region. Sustainability, 13(7), 3872. https://doi.org/10.3390/su13073872