Unveiling the Efficiency of Psychrophillic Aporrectodea caliginosa in Deciphering the Nutrients from Dalweed and Cow Manure with Bio-Optimization of Coprolites
Abstract
:1. Introduction
2. Material and Methods
2.1. Earthworms and Raw Material
2.2. Experimental Set Up
2.3. Chemical Properties of Coprolites
2.4. Coprolite Enzyme Analysis
2.5. Humification Indices
2.6. Reproductive Performance of A. caliginosa
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Coprolites
3.2. Microbial Activity and Enzyme Property
3.3. C:N, C:P, and C:S Ratio
3.4. Humification
3.5. Reproductive Performance of A. caliginosa
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganie, S.A.; Rabani, M.S.; Mir, M.A.; Khan, I.A. Proximate Nutrient Content Analysis of Some Aquatic Weeds of DalLake Srinagar. Int. J. Pharm. Biol. Sci. 2019, 9, 713–720. [Google Scholar]
- Hussain, N.; Abbasi, T.; Abbasi, S.A. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia Molesta. Environ. Sci. Pollut. Res. 2018, 25, 4989–5002. [Google Scholar] [CrossRef]
- Lakes and Water ways, D.A., (Jammu and Kashmir). Weeds englough Dal Lake. Greater Kashmir, 31 July 2016. [Google Scholar]
- Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus(Nelumbo nucifera)—Phytochemical and therapeutic profile. J. Pharm. Pharmacol. 2009, 61, 407–422. [Google Scholar] [CrossRef]
- Gusain, R.; Pandey, B.; Suthar, S. Composting as a sustainable option for managing biomass of aquatic weed Pistia: A biological hazard to aquatic system. J. Clean. Prod. 2018, 177, 803–812. [Google Scholar] [CrossRef]
- Suthar, S.; Pandey, B.; Gusain, R.; Gaur, R.Z. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistiasp.) biomass: Anoxious weed of aquatic system. Environ. Sci. Pollut. Res. 2017, 24, 199–207. [Google Scholar] [CrossRef]
- Kanaga, M.D.; Deivanayaki, M. Effect of different Nelumbo nucifera media on the growth and cocoon Production of Eisenia fetida. Res. J. Sci. Technol. 2017, 9, 239–243. [Google Scholar] [CrossRef]
- Najar, I. Vermicomposting of aquatic weeds: A quick review. Plant Sci. Today 2017, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.; Kaur, A. Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Sci. Rep. 2019, 9, 1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, K.K.; Aneja, K.R.; Rana, D. Current status of cow dung as a Bioresource for sustainable development. Bioresour. Bioprocess. 2016, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Rini, J.; Deepthi, M.P.; Saminathan, K.; Narendhirakannan, R.T.; Karmegam, N.; Kathireswari, P. Nutrient recovery and vermicompost production from live stock solid wastes with epigeic earth worms. Bioresour. Technol. 2020, 313, 123690. [Google Scholar] [CrossRef] [PubMed]
- Teenstra, E.D.; Vellinga, T.V.; Aktasaeng, N.; Amatayaku, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, C.O.; Andeweg, K. Global Assessment of Manure Management Policies and Practices; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2014; pp. 1–33. [Google Scholar]
- Jjagwe, J.; Komakech, A.J.; Karungi, J.; Amann, A.; Wanyama, J.; Lederer, J. Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda. Sustainability 2019, 11, 5173. [Google Scholar] [CrossRef] [Green Version]
- Yuvaraj, A.; Thangaraj, R.; Balasubramani, R.; Chang, S.; Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 2021, 268, 115688. [Google Scholar] [CrossRef]
- Deng, M.; Bellingrath-Kimura, S.D.; Zeng, L.; Hojito, M.; Zhang, T.; Yoh, M. Evaluation of environmental risks on Andosols from an intensive dairy farming water shed using DNDC. Sci Total Environ. 2015, 512–513, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Wang, S.; Zhang, P.; Ye, J.; Liang, J.; Nabi, M.; Zhou, Z.; Tao, X.; Chen, N.; Sun, K.; et al. Biological nutrient removal and recovery from solid and liquid live stock manure: Recent advance and perspective. Bioresour. Technol. 2020, 301, 122823. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Trinh, N.N.; Bach, Q.-V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Appl. Soil Ecol. 2020, 152, 103531. [Google Scholar] [CrossRef]
- Kim, S.Y.; Pramanik, P.; Bodelier, P.L.E.; Kim, P.J. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy. PLoS ONE 2014, 9, e113593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandar, R.; Baskaran, L.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Ravindran, B.; Chang, S.W.; Karmegam, N. Enriched press mud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresour. Technol. 2020, 299, 122578. [Google Scholar] [CrossRef]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Antonkiewicz, J. Factors influencing chemical quality of composted poultry waste. Saudi. J. Biol. Sci. 2018, 25, 1678–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, S.T.; Zhu, B.; Tang, J.L.; Ali, Z.; Anjum, R.; Bah, H.; Iqbal, H.; Ren, X.; Ahmad, R. Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. Appl. Sci. 2020, 10, 8956. [Google Scholar] [CrossRef]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. Hidden Engineers and Service Providers: Earth worms in Agricultural Land-Use Types of South Tyrol, Italy. Sustainability 2021, 13, 312. [Google Scholar] [CrossRef]
- Butt, K.R.; Nuutinen, V. Earthworms in past and present agricultural landscapes of Hebridean Scotland. Eur. J. Soil Biol. 2021, 104, 103273. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Ravindran, B.; Mnkeni, P.N.S. Potential of effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of flyash in corporate into cow dung–paper waste mixture. Waste Manag. 2016, 48, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar] [CrossRef]
- John, M.K. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 1970, 109, 214–220. [Google Scholar] [CrossRef]
- Karmegam, N.; Daniel, T. Growth, reproductive biology and lifecycle of the vermicomposting earthworm,Perionyx ceylanensis Mich.(Oligochaeta: Megascolecidae). Bioresour. Technol. 2009, 100, 4790–4796. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Asgher, Z.; Tahir, M.; Ijaz, M.; Shahid, M.; Ali, H.; Sattar, A. Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. 2016, 53, 633–645. [Google Scholar]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.; Cui, G.; Li, F.; Chen, Y.; Wu, N. Effects of earth worms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in arrange of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, W.T.; Tabatabai, M.A. Amidase and urease activities in plants. Plant Soil 1982, 64, 153–166. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Roig, A.; Martínez-Pardo, C.; Cegarra, J.; Paredes, C. A microanalysis method for determining total organic carbon in extracts of humic substances. Relationships between total organic carbon and oxidable carbon. Bioresour. Technol. 1996, 57, 291–295. [Google Scholar] [CrossRef]
- Mazantseva, G.P. Growth pattern in the earthworm Nocodrilus calignosus (Oligochaeta: Lumbricidae) during the first year of life. Pedobiology 1982, 23, 272–276. [Google Scholar]
- Gong, X.; Li, S.; Sun, X.; Wang, L.; Cai, L.; Zhang, J.; Wei, L. Green waste compost and vermicompost as peat substitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.). Sci. Hortic. 2018, 236, 186–191. [Google Scholar] [CrossRef]
- Hanc, A.; Chadimova, Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 2014, 168, 240–244. [Google Scholar] [CrossRef]
- Gusain, R.; Suthar, S. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: Changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour. Technol. 2020, 311, 123585. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Khoram, M.R.; Gholami, M.; Eslami, H. Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J. Clean Prod. 2020, 242, 118523. [Google Scholar] [CrossRef]
- Jain, M.S.; Daga, M.; Kalamdhad, A.S. Physical parameters evaluation during production of soil conditioner from aquatic waste: Hydrilla verticillata (Lf)Royle. Environ. Technol. Innov. 2018, 11, 64–73. [Google Scholar] [CrossRef]
- Varma, V.S.; Kalamdhad, A.S.; Khwairkpam, M. Feasibility of Eudrilus eugeniae and Perionyx excavates in vermicomposting of water hyacinth. Ecol. Eng. 2016, 94, 127–135. [Google Scholar] [CrossRef]
- Negi, R.; Suthar, S. Degradation of paper mill waste water sludge and cow dung using brown-rot fungi Oligoporus placenta and Eisenia fetida during vermicomposting. J. Clean. Prod. 2018, 201, 442–452. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V. Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida. J. Hazard. Mater. 2009, 162, 430–439. [Google Scholar] [CrossRef]
- Gaur, A.C.; Singh, G. Recycling of rural and urban wastes through conventional and vermicomposting. In Recycling of Crop, Animal, Human and Industrial Wastes in Agriculture; Tandon, H.L.S., Ed.; Fertilizer Development and Consultation Organisation: New Delhi, India, 1995; pp. 31–49. [Google Scholar]
- Crawford, J. Review of composting. Process Biochem. 1983, 18, 14–15. [Google Scholar]
- Lv, B.; Zhang, D.; Chen, Q.; Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 2019, 287, 121428. [Google Scholar] [CrossRef]
- Sharma, K.; Garg, V.K. Vermicomposting: A green technology for organic waste management. In Waste to Wealth.; Springer: Singapore, 2018; pp. 199–235. [Google Scholar]
- Zhang, H.; Li, J.; Zhang, Y.; Huang, K. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. Int. J. Environ. Res. Public Health 2020, 17, 1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Xing, M.; Wang, Y.; Xu, Z.; Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earth worms and seasonal variation on treating excess sludge. J. Environ. Manag. 2016, 170, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Schnürer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef] [Green Version]
- Tayebi Sudkolai, S.; Nourbakhsh, F. Urease activity as an index for assessing them aturity of cow manure and wheat residue vermicomposts. Waste Manag. 2017, 64. [Google Scholar] [CrossRef]
- Wu, S.; Shen, Z.; Yang, C.; Zhou, Y.; Li, X.; Zeng, G.; Ai, S.; He, H. Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting. Int. Biodeterior. Biodegrad. 2017, 119, 429–436. [Google Scholar] [CrossRef]
- Jurado, M.; Suárez-Estrella, F.; Vargas-García, M.; López, M.; López-González, J.; Moreno, J. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J. Environ. Manag. 2014, 133, 355–364. [Google Scholar] [CrossRef]
- Bohacz, J. Changes in mineral forms of nitrogen and sulfur and enzymatic activities during composting of lignocellulosic waste and chicken feathers. Environ. Sci. Pollut. Res. 2019, 26, 10333–10342. [Google Scholar] [CrossRef] [Green Version]
- Swarnam, T.; Velmurugan, A.; Pandey, S.K.; Roy, S.D. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresour. Technol. 2016, 207, 76–84. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen mineralization from organic residues: Research opportunities. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Ramnarain, Y.I.; Ansari, A.A.; Ori, L. Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric. 2019, 8, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Devi, C.; Khwairakpam, M. Management of lignocellulosic green waste Saccharum spontaenum through vermicomposting with cow dung. Waste Manag. 2020, 113, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Soobhany, N.; Gunasee, S.; Rago, Y.P.; Joyram, H.; Raghoo, P.; Mohee, R.; Garg, V.K. Spectroscopic, thermo gravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Bioresour. Technol. 2017, 236, 11–19. [Google Scholar] [CrossRef]
- Singh, A.; Jain, A.; Sarma, B.; Abhilash, P.; Singh, H. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida. Waste Manag. 2013, 33, 1113–1118. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V.K. Nutrient Recycling from Industrial Solid Wastes and Weeds by Vermi processing Using Earthworms. Pedosphere 2013, 23, 668–677. [Google Scholar] [CrossRef]
- Pattnaik, S.; Reddy, M.V. Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mupondi, L.T.; Mnkeni, P.N.S.; Muchaonyerwa, P.; Mupambwa, H.A. Vermicomposting manure-paper mixture with igneous rock phosphate enhances biodegradation, phosphorus bioavailability and reduces heavy metal concentrations. Heliyon 2018, 4, e00749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. Areview. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, R.K.; Chakraborty, S.K. Assessment of qualitative enrichment of organic papermill wastes through vermicomposting: Humification factor and time of maturity. Heliyon 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Ajibade, S.; Mupambwa, H.A.; Manyevere, A.; Mnkeni, P.N.S. Influence of Microbial Inoculation ofI gneous Rock Phosphate-Amended Cow and Pig Manures on Vermidegradation and Nutrient Release. Agronomy 2020, 10, 1587. [Google Scholar] [CrossRef]
- Huang, G.F.; Wu, Q.T.; Wong, J.; Nagar, B. Transformation of organic matter during co-composting of pig manure with saw dust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.; Nandal, M.; Nain, L. Additive effect of cowdung slurry and cellulolytic bacteria linoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agric. 2019, 8, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Loh, T.C.; Lee, Y.C.; Liang, J.B.; Tan, D. Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresour. Technol. 2005, 96, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S. Growth and fecundity of earth worms: Perionyx excavates and Perionyx sansibaricus in cattle waste solids. Environment 2009, 29, 78–84. [Google Scholar] [CrossRef]
S.No. | Treatments | Composition |
---|---|---|
1. | CM100 | Cow manure = 2.0 kg (control) |
2. | DW100 | Dal weed = 2.0 kg (control) |
3. | CM80:DW20 | CM80 = Cow Manure 1.60 kg + DW20 = Dal weed 0.40 kg |
4. | CM60:DW40 | CM60 = Cow Manure 1.20 kg + DW40 = Dal weed 0.80 kg |
5. | CM40:DW60 | CM80 = Cow Manure 0.80 kg + DW20 = Dal weed 1.20 kg |
6. | CM20:DW80 | CM80 = Cow Manure 0.40 kg + DW20 = Dal weed 1.60 kg |
Treatments | pH | TOC (%) | TP (%) | NO3− (%) | TN (%) | TK (%) | Fe (%) | Zn (%) |
---|---|---|---|---|---|---|---|---|
CM100(Control) | 7.000 a | 21.667 a | 0.710 ab | 0.213 b | 3.167 a | 1.333 a | 0.097 a | 0.063 a |
DW100 (Control) | 7.400 a | 14.067 d | 0.510 b | 0.190 b | 1.900 c | 0.467 d | 0.063 bc | 0.028 b |
CM80:DW20 | 6.867 a | 19.533 ab | 0.747 ab | 0.297 a | 3.200 a | 1.060 ab | 0.087 ab | 0.051 ab |
CM60:DW40 | 7.133 a | 18.200 bc | 0.847 a | 0.273 a | 2.867 ab | 0.927 bc | 0.098 a | 0.051 ab |
CM40:DW60 | 7.433 a | 16.500 cd | 0.613 ab | 0.187 b | 2.503 abc | 0.860 bc | 0.060 c | 0.046 ab |
CM20:DW80 | 7.300 a | 16.267 cd | 0.510 b | 0.173 b | 2.283 bc | 0.687 cd | 0.060 c | 0.036 b |
Treatments | CM100(Control) | DW100(Control) | CM80:DW20 | CM60:DW40 | CM40:DW60 | CM20:DW80 |
---|---|---|---|---|---|---|
Initial | ||||||
C:N ratio | 36.33 ± 1.53 | 28.33 ± 0.58 | 29.67 ± 0.58 | 27.67 ± 0.57 | 23.33 ± 1.53 | 17.67 ± 2.08 |
C:P ratio | 48.00 ± 1.00 | 38.00 ± 1.00 | 53.33 ± 1.51 | 34.67 ± 1.53 | 31.00 ± 1.00 | 27.33 ± 1.48 |
C:S ratio | 168.33 ± 1.53 | 73.67 ± 1.15 | 154.67 ± 2.08 | 128.00 ± 3.00 | 111.33 ± 2.08 | 92.33 ± 3.06 |
Partial | ||||||
C:N ratio | 25.67 ± 1.48 | 16.67 ± 2.08 | 24.67 ± 1.95 | 22.67 ± 1.53 | 18.33 ± 1.15 | 15.67 ± 1.12 |
C:P ratio | 52.03 ± 1.03 | 33.00 ± 1.00 | 45.33 ± 1.21 | 29.00 ± 1.11 | 26.00 ± 1.02 | 20.17 ± 1.04 |
C:S ratio | 153.33 ± 1.42 | 56.67 ± 1.33 | 142.67 ± 1.14 | 118.33 ± 1.53 | 95.67 ± 2.08 | 73.33 ± 1.21 |
Final | ||||||
C:N ratio | 23.67 ± 1.33 | 22.33 ± 1.41 | 20.67 ± 2.02 | 18.17 ± 1.04 | 15.83 ± 0.29 | 14.83 ± 1.03 |
C:P ratio | 42.17 ± 1.04 | 25.00 ± 1.00 | 37.67 ± 1.53 | 22.33 ± 1.14 | 21.33 ± 1.38 | 18.33 ± 0.54 |
C:S ratio | 72.67 ± 1.41 | 24.00 ± 1.05 | 55.33 ± 1.23 | 63.33 ± 0.97 | 40.33 ± 1.15 | 35.67 ± 1.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh, T.; Baba, Z.; Iqbal, S.; Hamid, B.; Wani, F.J.; Bhat, M.A.; Suhail, S. Unveiling the Efficiency of Psychrophillic Aporrectodea caliginosa in Deciphering the Nutrients from Dalweed and Cow Manure with Bio-Optimization of Coprolites. Sustainability 2021, 13, 5338. https://doi.org/10.3390/su13105338
Sheikh T, Baba Z, Iqbal S, Hamid B, Wani FJ, Bhat MA, Suhail S. Unveiling the Efficiency of Psychrophillic Aporrectodea caliginosa in Deciphering the Nutrients from Dalweed and Cow Manure with Bio-Optimization of Coprolites. Sustainability. 2021; 13(10):5338. https://doi.org/10.3390/su13105338
Chicago/Turabian StyleSheikh, Tahir, Zahoor Baba, Sadaf Iqbal, Basharat Hamid, Fehim J. Wani, M. Anwar Bhat, and Sheikh Suhail. 2021. "Unveiling the Efficiency of Psychrophillic Aporrectodea caliginosa in Deciphering the Nutrients from Dalweed and Cow Manure with Bio-Optimization of Coprolites" Sustainability 13, no. 10: 5338. https://doi.org/10.3390/su13105338
APA StyleSheikh, T., Baba, Z., Iqbal, S., Hamid, B., Wani, F. J., Bhat, M. A., & Suhail, S. (2021). Unveiling the Efficiency of Psychrophillic Aporrectodea caliginosa in Deciphering the Nutrients from Dalweed and Cow Manure with Bio-Optimization of Coprolites. Sustainability, 13(10), 5338. https://doi.org/10.3390/su13105338