Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives
Abstract
:1. Introduction
1.1. Global Market for Sustainable Green Chemistry
1.2. Succinic Acid and Its Uses
2. Production of Succinic Acid via Biorefinery
3. Separation of Succinic acid from the Product Mixture
3.1. Liquid–Liquid Extraction
3.2. Recovery of SA via Precipitation Technique
3.3. Crystallization for Succinic Acid Recovery
3.4. Distillation Technique for Succinic Acid Recovery
3.5. Membrane-Based Techniques for Succinic Acid Recovery
3.5.1. Electrodialysis Technique for Succinic Acid Recovery
3.5.2. Ultra-Filtration Technique for Succinic Acid Recovery
3.5.3. Reverse Osmosis for Succinic Acid Recovery
3.5.4. Nanofiltration Membranes for Succinic Acid Recovery
3.5.5. Emulsion Liquid Membrane Separation for Succinic Acid Recovery
3.5.6. Ionic Liquid Membrane Separation for Succinic Acid Recovery
3.5.7. Forward-Osmosis Technique for Succinic Acid Recovery
3.6. Integrated-Membrane Processes for Succinic Acid Recovery
4. Production of SA via “One-Pot” Bioconversion of Biomass with Integrated-Membrane-Based Separation
5. Conclusions and Outlook
- The membrane-based downstream processing of succinic acid could be inexpensive and environmentally friendly, with a flexible plant design and reduced carbon footprint.
- Due to overall cost reduction, recovery of succinic acid by membrane-based technique could push for mass-scale production of succinic acid at industrial level
- In order to get high-purity product that is cheap and green, a membrane sequence for the removal of impurities, such as proteins, microbial cells, residual salts and sugars, using microfiltration and nanofiltration is a promising option. In addition, product concentration by using nanofiltration and forward-osmosis techniques could be beneficial.
- Membrane-based systems can be used to achieve a high degree of product purity without the added acids or bases. However, further research is required on a few areas to address concerns, such as fouling, flux improvement, concentration polarization and local membrane development for enhanced recovery of fermentation products.
- For better understanding of an integrated downstream process and scale-up, model development should be considered. This is important, as models can reduce the number of experiments required and allow for a smooth transition from laboratory-scale to large-scale production of high-purity products. This can facilitate the upcoming optimization studies, techno-economic analysis and scale-up.
- The implementation of circular economy system or zero-waste approach towards actualizing sustainable waste management should be considered in the downstream processing during the production of succinic acid, with the aim of taking full advantage of the potential of biomass to replace non-sustainable resources and meeting global needs for SA production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Chen, H.; Wang, L. Chapter 1-Introduction. In Technologies for Biochemical Conversion of Biomass; Academic Press: Cambridge, MA, USA, 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Xie, H.; Gathergood, N. The Role of Green Chemistry in Biomass Processing and Conversion; John Wiley & Sons: Toronto, ON, Canada, 2012; pp. 1–496. ISBN 978-0-470-64410-2. Available online: https://www.wiley.com/en-us/9780470644102 (accessed on 18 May 2021).
- Bernick, L. The Right Chemistry. The $100 Billion Business Case for Safer Chemistry. Available online: https://www.greenbiz.com/article/100-billion-business-case-safer-chemistry (accessed on 31 October 2020).
- Deselnicu, D.C.; Militaru, G.; Deselnicu, V.; Zăinescu, G.; Albu, L. Towards a circular economy—A zero waste programme for Europe. In Proceedings of the CAMS 2018—7th International Conference on Advanced Materials and Systems, Timisoara, Romania, 28–31 March 2018; pp. 563–568. [Google Scholar] [CrossRef]
- Molino, A.; Casella, P.; Marino, T.; Iovine, A.; Dimatteo, S.; Balducchi, R.; Musmarra, D. Succinic Acid Production as Main Player of the Green Chemistry Industry by using Actinobacillussuccinogens. Chem. Eng. Trans. 2020, 79, 289–294. [Google Scholar] [CrossRef]
- Cespi, D.; Esposito, I.; Cucciniello, R.; Anastas, P.T. Beyond the beaker: Benign by design society. Curr. Res. Green Sustain. Chem. 2020, 3, 100028. [Google Scholar] [CrossRef]
- Morales, M.; Ataman, M.; Badr, S.; Linster, S.; Kourlimpinis, I.; Papadokonstantakis, S.; Hatzimanikatis, V.; Hungerbühler, K. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ. Sci. 2016, 9, 2669–2926. [Google Scholar] [CrossRef]
- Saxena, R.K.; Saran, S.; Isar, J.; Kaushik, R. Production and applications of succinic acid. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 601–630. [Google Scholar]
- Erickson, B.; Nelson Winters, P. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 2012, 7, 176–185. [Google Scholar] [CrossRef]
- Law, J.Y.; Mohammad, A.W.; Tee, Z.K.; Zaman, N.K.; Md Jahim, J.; Santanaraj, J.; Sajab, M.S. Recovery of succinic acid from fermentation broth by forward osmosis-assisted crystallization process. J. Membr. Sci. 2019, 583, 139–151. [Google Scholar] [CrossRef]
- Transparency Market Research. The Succinic Acid Market. pp. 1–95. Available online: https://www.transparencymarketresearch.com/succinic-acid.html (accessed on 13 April 2021).
- Ahn, J.H.; Jang, Y.-S.; Lee, S.Y. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016, 42, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Sekoai, P.T.; Awosusi, A.A.; Yoro, K.O.; Singo, M.; Oloye, O.; Ayeni, A.O.; Bodunrin, M.; Daramola, M.O. Microbial cell immobilization in biohydrogen production: A short overview. Crit. Rev. Biotechnol. 2018, 38, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Apergis, N.; Payne, J.E. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model. Energy Econ. 2014, 42, 226–232. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Kumar, R.; Basak, B.; Jeon, B.-H. Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. J. Clean. Prod. 2020, 277, 123954–123973. [Google Scholar] [CrossRef]
- Kurzrock, T.; Weuster-Botz, D. Recovery of succinic acid from fermentation broth. Biotechnol. Lett. 2010, 32, 331–339. [Google Scholar] [CrossRef]
- Cok, B.; Tsiropoulos, I.; Roes, A.L.; Patel, M.K. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod. Bioref. 2014, 8, 16–29. [Google Scholar] [CrossRef]
- Zheng, P.; Fang, L.; Xu, Y.; Dong, J.J.; Ni, Y.; Sun, Z.H. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour. Technol. 2010, 101, 7889–7894. [Google Scholar] [CrossRef]
- Willke, T.; Vorlop, K.D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Beauprez, J.J.; De Mey, M.; Soetaert, W.K. Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochem. 2010, 45, 1103–1114. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Wu, Y.; Li, W.; Zhang, Y.; Xing, J.; Su, Z. One step recovery of succinic acid from fermentation broths by crystallization. Sep. Purif. Technol. 2010, 72, 294–300. [Google Scholar] [CrossRef]
- Cimini, D.; Argenzio, O.; Ambrosio, S.; Lama, L.; Finore, I.; Finamore, R.; Pepe, O.; Faraco, V.; Schiraldi, C. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresour. Technol. 2016, 222, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurzrock, T.; Weuster-Botz, D. New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst. Eng. 2011, 34, 779–787. [Google Scholar] [CrossRef]
- Alexandri, M.; Vlysidis, A.; Papapostolou, H.; Tverezovskaya, O.; Tverezovskiy, V.; Kookos, I.K.; Koutinas, A. Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separ. Purif. Technol. 2019, 209, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Kumar, R.; Chakravarthi, D.V.; Chakrabortty, S. Modelling and simulation of continuous production of L (+) glutamic acid in a membrane-integrated bioreactor. Biochem. Eng. J. 2016, 106, 68–86. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, P. Fermentative production of poly (g-glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process. Bioresour. Technol. 2015, 177, 141–148. [Google Scholar] [CrossRef]
- Sosa, P.A.; Roca, C.; Velizarov, S. Membrane assisted recovery and purification of bio-based succinic acid for improved process sustainability. J. Membr. Sci. 2016, 501236–501247. [Google Scholar] [CrossRef]
- Londono, A.O. Separation of Succinic Acid from Fermentation Broths and Esterification by a Reactive Distillation Method. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2010. Available online: https://d.lib.msu.edu/etd/888. (accessed on 13 July 2020).
- Awosusi, A.A. Bioconversion of Waste Lignocellulosic Biomass (South African corn cob) to Succinic Acid in Molten Hydrate Solvent System. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018. Available online: https://hdl.handle.net/10539/25888 (accessed on 24 October 2020).
- Cornils, B.; Lappe, P. Dicarboxylic Acids, Aliphatic Ullmann’s Enzyklopedia of Industrial Chemistry; Wiley: Weinheim, Germany, 2002. [Google Scholar] [CrossRef]
- Li, Q.Z.; Jiang, X.L.; Feng, X.J.; Wang, J.M.; Sun, C.; Zhang, H.B. Recovery processes of organic acids from fermentation broths in the biomass-based industry. J. Microbiol. Biotechnol. 2016, 26, 1–8. [Google Scholar] [CrossRef]
- Agarwal, L.; Isar, J.; Saxena, R. Rapid screening procedures for identification of succinic acid producers. J. Biochem. Biophys. 2005, 63, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.K.; Zhao, X.B.; Zeng, J.; Wu, R.C.; Xu, Y.Z.; Liu, D.H.; Zhang, J.A. Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biotechnol. 2012, 95, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, J.; Xu, Y.; Gao, X.; Gao, C. Performance of UF-NF integrated membrane process for seawater softening. Desalination 2011, 276, 109–116. [Google Scholar] [CrossRef]
- Huh, Y.S.; Jun, Y.S.; Hong, Y.K.; Song, H.; Lee, S.Y.; Hong, W.H. Effective purification of succinic acid from fermentation broth produced by Mannheimiasucciniciproducens. Process Biochem. 2006, 41, 1461–1465. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011, 40, 5588–5617. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, R. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.C. Enzymes as Biocatalysts for Conversion of Lignocellulosic Biomass to Fermentable Sugars. In Handbook of Industrial Biocatalysis; Hou, C.T., Ed.; CRC Press: Abingdon, UK, 2005. [Google Scholar]
- Ladisch, M.; Ximenes, E.; Kim, Y.; Mosier, N.S. Biomass Chemistry and pretreatment for biological processes. In Catalysis for the Conversion and Its Derivatives; Behrens, M., Datye, A., Eds.; Max Planck Research Library for the History and Development of Knowledge: Berlin, Germany, 2013; pp. 131–158. ISBN 978-3-8442-4282-9. [Google Scholar]
- Barakat, A.; de Vries, H.; Rouau, X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresour. Technol. 2013, 134, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.; Lassi, U. Ionic Liquids: Applications and Perspectives; Kokorin, A., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-248-7. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584–595. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Huber, G.W. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries; National Science Foundation: Washington, DC, USA, 2008; p. 180. Available online: http://www.ecs.umass.edu/biofuels/Images/Roadmap2-08.pdf (accessed on 15 January 2021).
- Taherzadeh, M.J.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Huh, Y.S.; Lee, S.Y.; Hong, W.H.; Hong, Y.K. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J. Biotechnol. 2007, 132, 445–452. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Hu, G.; Xing, J.; Su, Z. Integrated bioprocess for high-efficiency production of succinic acid in an expanded-bed adsorption system. Biochem. Eng. J. 2011, 56, 150–157. [Google Scholar] [CrossRef]
- Davison, B.H.; Nghiem, N.P.; Richardson, G.L. Succinic Acid Adsorption from Fermentation Broth and Regeneration. Appl. Biochem. Biotechnol. 2004, 114, 653–670. [Google Scholar] [CrossRef]
- López-Garzón, C.S.; Ottens, M.; van der Wielen, L.A.; Straathof, A.J. Direct downstream catalysis: From succinate to its diethyl ester without intermediate acidification. Chem. Eng. J. 2012, 200–202, 637–644. [Google Scholar] [CrossRef]
- Zeikus, J.G.; Jain, M.K.; Elankovan, P. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 1999, 51, 545–552. [Google Scholar] [CrossRef]
- Fu, L.; Gao, X.; Yang, Y.; Aiyong, F.; Hao, H.; Gao, C. Preparation of succinic acid using bipolar membrane electrodialysis. Sep. Purif. Technol. 2014, 127, 212–218. [Google Scholar] [CrossRef]
- Jansen, M.L.A.; van Gulik, W.M. Towards large scale fermentative production of succinic acid. Curr. Opin. Biotechnol. 2014, 30, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Salles, I.M.; Dorotyn, S.; Soucaile, P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol. Bioeng. 2008, 99, 129–135. [Google Scholar] [CrossRef]
- Luque, R.; Lin, C.S.K.; Du, C.; MacQuarrie, D.J.; Koutinas, A.; Wang, R.; Webb, C.; Clark, J.H. Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chem. 2009, 11, 193–200. [Google Scholar] [CrossRef]
- Huang, H.-J.; Ramaswamy, S.; Tschirner, U.; Ramarao, B. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 2008, 62, 1–21. [Google Scholar] [CrossRef]
- Datta, D.; Kumar, S.; Uslu, H. Status of the Reactive Extraction as a Method of Separation. J. Chem. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- John, J.J.; Kuhn, S.; Braeken, L.; Van Gerven, T. Ultrasound assisted liquid–liquid extraction with a novel interval-contact reactor. Chem. Eng. Process. Process. Intensif. 2017, 113, 35–41. [Google Scholar] [CrossRef]
- Moraes, L.D.S.; Kronemberger, F.D.A.; Ferraz, H.C.; Habert, A.C. Liquid–liquid extraction of succinic acid using a hollow fiber membrane contactor. J. Ind. Eng. Chem. 2015, 21, 206–211. [Google Scholar] [CrossRef]
- King, C.J.; Dtarr, J. Recovery of Carboxylic Acids from Water by Precipitation from Organic Solutions. U.S. Patent 5,104,492, 14 April 1992. [Google Scholar]
- King, C.J.; Poole, L.J. Craboxylic Acid Sorption Regeneration Process. U.S. Patent 5,412,126, 2 May 1995. [Google Scholar]
- Sprakel, L.M.J.; Holtkamp, A.F.M.; .Bassa, R.; .Schuur, B. Swing processes for solvent regeneration in liquid-liquid extraction of succinic acid. Chem. Eng. Process. Process Intensif. 2019, 143, 107600. [Google Scholar] [CrossRef]
- Sprakel, L.M.J.; Schuur, B. Review: Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep. Purif. Technol. 2019, 211, 935–957. [Google Scholar] [CrossRef]
- Bayazit, S.S.; Uslu, H.; Inci, I.S. Comparison of the efficiencies of amine extractants on lactic acid with different organic solvents. J. Chem. Eng. Data 2009, 56, 750–756. [Google Scholar] [CrossRef]
- Djas, M.; Henczka, M. Reactive extraction of citric acid using supercritical carbon dioxide. J. Supercrit. Fluids 2016, 117, 59–63. [Google Scholar] [CrossRef]
- Jipa, I.; Dobre, T.; Stroescu, M.; Stoica, A. Acetic acid extraction from fermentation broth: Experimental and modelling studies. Rev. Chim. 2009, 60, 1084–1089. [Google Scholar]
- Chen, L.J.; Zeng, A.; Dong, H.B.; Li, Q.; Niu, C.C. A novel process for recovery and refining of L-lactic acid from fermentation broth. Bioresour. Technol. 2012, 112, 280–284. [Google Scholar] [CrossRef]
- Lateef, H.; Gooding, A.; Grimes, S. Use of 1-hexyl-3- methylimidazolium bromide ionic liquid in the recovery of lactic acid from wine. J. Chem. Technol. Biotechnol. 2012, 87, 1066–1073. [Google Scholar] [CrossRef]
- Wang, J.J.; Pei, Y.C.; Zhao, Y.; Hu, Z.G. Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chem. 2005, 7, 196–202. [Google Scholar] [CrossRef]
- Mikkola, J.P.; Virtanen, P.; Sjöholm, R. Aliquat 336®—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids. Green Chem. 2006, 8, 250–255. [Google Scholar] [CrossRef]
- Marták, J.; Schlosser, Š. Extraction of lactic acid by phosphonium ionic liquids. Sep. Purif. Technol. 2007, 57, 483–494. [Google Scholar] [CrossRef]
- Oliveira, F.S.; Araújo, J.M.; Ferreira, R.; Rebelo, L.P.N.; Marrucho, I.M. Extraction of L-lactic, L-malic, and succinic acids using phosphonium-based ionic liquids. Sep. Purif. Technol. 2012, 85, 137–146. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, H.C. Batch and continuous separation of acetic acid from succinic acid in a feed solution with high concentrations of carboxylic acids by emulsion liquid membranes. J. Memb. Sci. 2011, 367, 190–196. [Google Scholar] [CrossRef]
- Yedur, S.; Berglung, K.S.; Dunuwila, D.D. Succinic Acid Production and Purification. U.S. Patent 6,265,190, 24 July 2001. [Google Scholar]
- Berglund, K.A.; Yedur, S.; Dunuwila, D. Succinic Acid Production and Purification. U.S. Patent 5,958,744, 28 September 1999. [Google Scholar]
- Eder, R.J.P.; Schmitt, E.K.; Grill, J.; Radl, S.; Woelfler, G.H.; Khinast, J.G. Seed loading effects on the mean crystal size of acetylsalicylic acid in a continuous-flow crystallization device. Cryst. Res. Technol. 2011, 46, 227–237. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Ma, C.Y.; Hu, Y.D.; Wang, X.Z. Effect of seed loading and cooling rate on crystal size and shape distributions in protein crystallization—A study using morphological population balance simulation. Comput. Chem. Eng. 2010, 34, 1945–1952. [Google Scholar] [CrossRef]
- Hojjati, H.; Rohani, S. Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer. Chem. Eng. Process. 2005, 44, 949–957. [Google Scholar] [CrossRef]
- Doki, N.; Seki, H.; Takano, K.; Asatani, H.; Yokota, A.M.; Kubota, N. Process control of seeded batch cooling crystallization of the metastable α-form glycine using an in-situ ATR-FTIR spectrometer and an in-situ FBRM particle counter. Cryst. Growth Des. 2004, 4, 949–953. [Google Scholar] [CrossRef]
- Pratiwi, A.I.; Matsumoto, M.; Kondo, K. Permeation of succinic acid through ionic liquid membrane. J. Chem. Eng. Jpn. 2013, 46, 383–388. [Google Scholar] [CrossRef]
- Thuy, N.T.H.; Boontawan, A. Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization. J. Membr. Sci. 2017, 524, 470–481. [Google Scholar] [CrossRef]
- Glassner, D.A.; Elankovan, P.; Beacom, D.; Berglund, R. Purification process for succinic acid produced by fermentation. Appl. Biochem. Biotechnol. 1995, 51–52, 73–82. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Yoon, Y.; Leuptow, R.M. Removal of organic compound by RO and NF membranes. J. Membr. Sci. 2005, 261, 76–86. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of electrodialysis to the production of organic acids: State-of-art and recent developments. J. Membr. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.; Konda, N.V.S.N.M.; Shi, J.; Dutta, T.; Scown, C.D.; Simmons, B.A.; Singh, S. Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ. Sci. 2015, 9, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, N.; Huang, C.; Xu, T. Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations. J. Membr. Sci. 2011, 385–386, 226–233. [Google Scholar] [CrossRef]
- Saremirad, P.; Gomaa, H.; Zhu, J. Effect of flow oscillations on mass transfer in electrodialysis with bipolar membrane. J. Membr. Sci. 2012, 405–406, 158–166. [Google Scholar] [CrossRef]
- McKinlay, J.B.; Vieille, C.; Zeikus, J.G. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 2007, 76, 727–740. [Google Scholar] [CrossRef]
- Jaquet, A.; Quan, L.; Marison, I.; Vonstockar, U. Factors influencing the potential use of Aliquat 336 for the in situ extraction of carboxylic acids from cultures of Pseudomonas putida. J. Biotechnol. 1999, 68, 185–196. [Google Scholar] [CrossRef]
- Arola, K.; Van Der Bruggen, B.; Mänttäri, M.; Kallioinen, M. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2049–2116. [Google Scholar] [CrossRef]
- Prochaska, K.; Antczak, J.; Regel-Rosocka, M.; Szczygiełda, M. Removal of succinic acid from fermentation broth by multistage process (membrane separation and reactive extraction). Sep. Purif. Technol. 2018, 192, 360–368. [Google Scholar] [CrossRef]
- Bonnélye, V.; Guey, L.; Del Castillo, J. UF/MF as RO pre-treatment: The real benefit. Desalination 2008, 222, 59–65. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Tang, H.; Yan, D.; Zhou, W.; Xing, J.; Wan, Y. Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresour. Technol. 2012, 116, 366–371. [Google Scholar] [CrossRef]
- Juang, R.S.; Chen, H.L.; Lin, Y.C. Ultrafiltration of coagulation-pretreated Serratia marcescens fermentation broth: Flux characteristics and prodigiosin recovery. Sep. Sci. Technol. 2012, 47, 37–41. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, H.D.; Park, H.B. Integrated Membrane Processes for Separation and Purification of Organic Acid from a Biomass Fermentation Process. Ind. Eng. Chem. Res. 2012, 51, 10207–10219. [Google Scholar] [CrossRef]
- Nigam, M.O.; Bansal, B.; Chen, X.D. Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination 2008, 218, 313–322. [Google Scholar] [CrossRef]
- AbdEl-Salam, M.H. Membrane techniques: Application of reverse osmosis. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Pandey, S.R.; Jegatheesan, V.; Baskaran, K.; Shu, L. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review. Rev. Environ. Sci. Biotechnol. 2012, 11, 125–145. [Google Scholar] [CrossRef]
- Ricci, B.C.; Ferreira, C.D.; Marques, L.S.; Martins, S.S.; Reis, B.G.; Amaral, M.C. Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent. Sep. Purif. Technol. 2017, 174, 301–311. [Google Scholar] [CrossRef]
- Phanthumchinda, N.; Rampai, T.; Prasirtsak, B.; Thitiprasert, S.; Tanasupawat, S.; Assabumrungrat, S.; Thongchul, N. Alternative reverse osmosis to purify lactic acid from a fermentation broth. Chem. Ind. Chem. Eng. Q. 2018, 24, 179–190. [Google Scholar] [CrossRef]
- Diltz, R.A.; Marolla, T.V.; Henley, M.V.; Li, L. Reverse osmosis processing of organic model compounds and fermentation broths. Bioresour. Technol. 2007, 98, 686–695. [Google Scholar] [CrossRef]
- Duranceau, S.J. Membrane Practices for Water Treatment; American Water Works Association: Denver, CO, USA, 2001; pp. 59–62. [Google Scholar]
- Paranjape, S.; Reardon, R.; Foussereau, X. Pretreatment technology for reverse osmosis membrane used in wastewater reclamation application past, present and future a literature review. Proc. Water Environ. Fed. 2003, 459–486. [Google Scholar] [CrossRef]
- Hoek, E.M.V.; Allred, J.; Knoell, T.; Jeong, B.H. Modeling the effects of fouling on full-scale reverse osmosis processes. J. Membr. Sci. 2008, 314, 33–49. [Google Scholar] [CrossRef]
- Koyuncu, I.; Sengur, R.; Truken, T.; Guclu, S.; Pasaoglu, M.E. Advances in water treatment by microfiltration, ultrafiltration and nanofiltration. In Advances in Membrane Technologies for Waste Water Treatment; Woodhead Publishing: Cambridge, UK, 2015; pp. 83–128. [Google Scholar] [CrossRef]
- Law, J.Y.; Mohammed, A. Separation of succinate from organic acid salts using nano filtration membranes. Chem. Eng. Trans. 2017, 56, 1705–1710. [Google Scholar] [CrossRef]
- Kang, S.H.; Chang, Y.K. Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J. Membr. Sci. 2005, 246, 49–57. [Google Scholar] [CrossRef]
- Zaman, N.K.; Rohani, R.; Mohammad, A.W.; Jahim, J.M. New polymeric membrane nanofiltration for succinate recovery: A comparative study. J. Polym. Res. 2017, 24, 197. [Google Scholar] [CrossRef]
- Antczak, J.; Szczygiełda, M.; Prochaska, K. Nanofiltration separation of succinic acid from post-fermentation broth: Impact of process conditions and fouling analysis. J. Ind. Eng. Chem. 2019, 77, 253–261. [Google Scholar] [CrossRef]
- Choi, J.-H.; Fukushi, K.; Yamamoto, K. A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 2008, 59, 17–25. [Google Scholar] [CrossRef]
- Luo, J.; Wan, Y. Effects of pH and salt on nanofiltration—a critical review. J. Membr. Sci. 2013, 438, 18–28. [Google Scholar] [CrossRef]
- Zaman, N.K.; Malaysia, U.K.; Yih, L.J.; Vun, C.P.; Rohani, R.; Mohammad, A.W. Recovery of Organic Acids from Fermentation Broth Using Nanofiltration Technologies: A Review. J. Phys. Sci. 2017, 28, 85–109. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.P.; Jahim, J.M.; Harun, S.; Wu, T.Y.; Mumtaz, T. Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int. J. Hydrog. Energy 2016, 41, 4896–4906. [Google Scholar] [CrossRef]
- Zaman, N.K.; Rohani, R.; Mohammad, A.W. Polyimide membranes for organic salts recovery from model biomass fermentation. Malays. J. Anal. Sci. 2016, 20, 1481–1490. [Google Scholar] [CrossRef]
- Zaman, N.K.; Rohani, R.; Mohammad, A.W.; Isloor, M.; Md, J.; Zaman, N.K.; Jamaliah, M.J. Investigation of Succinic Acid Recovery from Aqueous Solution and Fermentation Broth using Polyimide Nanofiltration Membrane. J. Environ. Chem. Eng. 2017, 1–36. [Google Scholar] [CrossRef]
- Jusoh, N.; Othman, N.; Nasruddin, N.A. Emulsion liquid membrane technology in organic acid purification. Malays. J. Anal. Sci. 2016, 20, 436–443. [Google Scholar] [CrossRef]
- Jusoh, N.; Othman, N. Stability of Palm Oil-based Emulsion Liquid Membrane for Succinic Acid Extraction from Aqueous Solution. J. Appl. Membr. Sci. Technol. 2016, 19, 1–17. [Google Scholar] [CrossRef]
- Jusoh, N.; Noah, N.F.M.; Othman, N. Extraction and Recovery Optimization of Succinic Acid Using Green Emulsion Liquid Membrane Containing Palm Oil as the Diluent. Environ. Prog. Sustain. Energy. 2018, 38. [Google Scholar] [CrossRef]
- Othman, N.; Jusoh, N.; Mohar, M.; Muhammad, B.R.; Norul, F.; Mohamed, N. Extraction of succinic acid from real fermentation broth using emulsion liquid membrane process. Malays. J. Anal. Sci. 2018, 22, 1090–1101. [Google Scholar] [CrossRef]
- Werner, S.; Haumann, M.; Wassersheid, P. Ionic liquids in chemical engineering. Annu Rev. Chem. Biomol. Eng. 2010, 1, 203–230. [Google Scholar] [CrossRef]
- Pratiwi, A.I.; Matsumoto, M. Chapter 5—Separation of Organic Acids through Liquid Membranes Containing Ionic Liquids. In Ionic Liquids in Separation Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 189–206. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chang, V.W.; Tang, C.Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future. J. Membr. Sci. 2016, 504, 113–132. [Google Scholar] [CrossRef]
- Haupt, A.; Lerch, A. Forward Osmosis Application in Manufacturing Industries: A Short Review. Membranes 2018, 8, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azlan, N.M.; Peshev, D.; Livingston, A. Energy consumption for desalination—A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination 2016, 377, 138–151. [Google Scholar] [CrossRef] [Green Version]
- Sreedhar, I.; Khaitan, S.; Gupta, R.; Reddy, B.M.; Venugopal, A. An odyssey of process and engineering trends in forward osmosis. Environ. Sci. Water Res. Technol. 2018, 4, 129–168. [Google Scholar] [CrossRef]
- Abou El-Nour, F.H. Water Desalination Studies Using Forward Osmosis Technology, a Review. Arab. J. Nucl. Sci. Appl. 2016, 49, 167–176. [Google Scholar]
- Lutchmiah, K.; Verliefde, A.; Roest, K.; Rietveld, L.; Cornelissen, E. Forward osmosis for application in wastewater treatment: A review. Water Res. 2014, 58, 179–197. [Google Scholar] [CrossRef]
- Munirasu, S.; Haija, M.A.; Banat, F. Use of membrane technology for oil field and refinery produced water treatment—A review. Process Saf. Environ. Prot. 2016, 100, 183–202. [Google Scholar] [CrossRef]
- Law, J.Y.; Mohammad, A.W. Osmotic concentration of succinic acid by forward osmosis: Influence of feed solution pH and evaluation of seawater as draw solution. Chin. J. Chem. Eng. 2018, 26, 976–983. [Google Scholar] [CrossRef]
- Garcia-Aguirre, J.; Alvarado-Morales, M.; Fotidis, I.A.; Angelidaki, I. Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. Biochem. Eng. J. 2019. [Google Scholar] [CrossRef]
- Lee, H.D.; Lee, M.Y.; Hwang, Y.S.; Cho, Y.H.; Kim, H.W.; Park, H.B. Separation and Purification of Lactic Acid from Fermentation Broth Using Membrane-Integrated Separation Processes. Ind. Eng. Chem. Res. 2017, 56, 8301–8310. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, L.; Fu, H.; Xiu, Z. Salting-out extraction and crystallization of succinic acid from fermentation broths. Process Biochem. 2014, 49, 506–511. [Google Scholar] [CrossRef]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.K.C.; Du, C.; Blaga, A.C.; Camarut, M.; Webb, C.; Stevens, C.V.; Soetaert, W. Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths. Green Chem. 2010, 12, 666–671. [Google Scholar] [CrossRef]
- Thuy, N.T.H.; Kongkaew, A.; Flood, A.; Boontawan, A. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresour. Technol. 2017, 233, 342–352. [Google Scholar] [CrossRef]
- Wang, C.; Ming, W.; Yan, D.; Zhang, C.; Yang, M.; Liu, Y.; Zhang, Y.; Guo, B.; Wan, Y.; Xing, J. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour. Technol. 2014, 156, 6–13. [Google Scholar] [CrossRef]
- Lee, J. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 1997, 56, 1–24. [Google Scholar] [CrossRef]
- Weatherley, L.R.; Gangu, A.S.; Scurto, A.M.; Petera, J. Chapter 12: Process Intensification of Enzymatic Biotransformation Processes. In Intensification of Biobased Processes; Royal Society of Chemistry: London, UK, 2018; pp. 268–288. [Google Scholar]
- Shi, J.; Gladden, J.M.; Sathitsuksanoh, N.; Kambam, P.; Sandoval, L.; Mitra, D.; Zhang, S.; George, A.; Singer, S.W.; Simmons, B.A.; et al. One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem. 2013, 15, 2579–2589. [Google Scholar] [CrossRef]
- Fischer, S.; Thummler, K.; Pfeiffer, K.; Liebert, T.; and Heinze, T. Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 2002, 9, 293–300. [Google Scholar] [CrossRef]
- De, S.; Dutta, S.; Saha, B. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. Chem Sus. Chem. 2012, 5, 1826–1833. [Google Scholar] [CrossRef]
- Field, R. Membranes for Water Treatment; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. A review of membrane fouling and its control in algal-related membrane processes. Bioresour. Technol. 2018, 264, 343–358. [Google Scholar] [CrossRef]
- Munshi, F.M.; Church, J.; McLean, R.; Maier, N.; Anwar Sadmani, A.H.M.; Duranceau, S.J.; Lee, W.H. Dewatering algae using an aquaporin-based d polyethersulfone forward osmosis membrane. Separ. Purif. Technol. 2018, 204, 154–161. [Google Scholar] [CrossRef]
- Song, W.; Ravindran, V.; Koel, B.E.; Pirbazari, M. Nanofiltration of natural organic matter with H2O2/UV pretreatment: Fouling mitigation and membrane surface characterization. J. Membr. Sci. 2004, 241, 143–160. [Google Scholar] [CrossRef]
- Sun, F.; Lu, D.; Ho, J.S.; Chong, T.H.; Zhou, Y. Mitigation of membrane fouling in a seawater-driven forward osmosis system for waste activated sludge thickening. J. Clean. Prod. 2019, 241, 118373. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Liu, Y.; He, M.; Su, Y.; Gao, C.; Jiang, Z. Antifouling membrane surface construction: Chemistry plays a critical role. J. Membr. Sci. 2018, 551, 145–171. [Google Scholar] [CrossRef]
- Gao, Y.; Qin, J.; Wang, Z.; Østerhus, S.W. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. J. Membr. Sci. 2019, 587, 117136. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Q. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: A review. Sep. Purif. Technol. 2018, 203, 193–208. [Google Scholar] [CrossRef]
- Qasim, M.; Darwish, N.N.; Mhiyo, S.; Darwish, N.A.; Hilal, N. The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination 2018, 443, 143–164. [Google Scholar] [CrossRef] [Green Version]
Lignocellulosic Biomass | Cellulose (%) | Hemicellulose (%) | Lignin (%) | |
---|---|---|---|---|
Hardwood | Poplar | 50.8–53.3 | 26.2–28.7 | 15.5–16.3 |
Oak | 40.4 | 35.9 | 24.1 | |
Eucalyptus | 54.1 | 18.4 | 21.5 | |
Softwood | Pine | 42.0–50.0 | 24.0–27.0 | 20.0 |
Douglas fir | 44.0 | 11.0 | 27.0 | |
Spruce | 45.5 | 22.9 | 27.9 | |
Agricultural waste | Wheat Straw | 35.0–39.0 | 23.0–30.0 | 12.0–16.0 |
Barley Hull | 34.0 | 36.0 | 13.8–19.0 | |
Barley Straw | 36.0–43.0 | 24.0–33.0 | 6.3–9.8 | |
Rice Straw | 29.2–34.7 | 23.0–25.9 | 17.0–19.0 | |
Rice Husks | 28.7–35.6 | 12.0–29.3 | 15.4–20.0 | |
Oat Straw | 31.0–35.0 | 20.0–26.0 | 10.0–15.0 | |
Ray Straw | 36.2–47.0 | 19.0–24.5 | 9.9–24.0 | |
Corn Cobs | 33.7–41.2 | 31.9–36.0 | 6.1–15.9 | |
Corn Stalks | 35.0–39.6 | 16.8–35.0 | 7.0–18.4 | |
Sugarcane Bagasse | 25.0–45.0 | 28.0–32.0 | 15.0–25.0 | |
15.0–25.0 | ||||
Sorghum Straw | 32.0–35.0 | 24.0–27.0 | 15.0–21.0 | |
Grasses | Grasses | 25.0–40.0 | 25.0–50.0 | 10.0–30.0 |
Switchgrass | 35.040.0 | 25.0–30.0 | 15.0–20.0 |
NF Membranes | MWCO (Da) | Membrane Area (m2) | Pressure (kPa) | pH of Broth | SA Concentration (g/L) | Permeate Flux (L/m2h) | R (%) | Separation Mechanism | Reference |
---|---|---|---|---|---|---|---|---|---|
TS80 | ~150 | 14.60 | 1500–3000 | 6.9 | 21.3–22.4 | N270 ˃ NFW > TS80 | 94.90 | Donnan exclusion | Law and Mohammed [110] |
NF270 | ~200–400 | 93.40 | |||||||
NFW | ~300–500 | 91.70 | |||||||
NF45 | - | 0.006 | 1378 | 7.0 | 11.87 | 45 | 85.00 | Donnan exclusion | Kang and Chang [111] |
P84 (Polyimide polymer) | - | - | 3000 | 7.0 | 50 | ˂15 | 92.50 | Donnan exclusion | Zaman et al. [112] |
NF270 | - | ˂5 | 98.4 | Donnan exclusion | |||||
NF270 | 450 | 0.0125 | 4000 | 8.5 | 30 | 50.0 | - | Antczak et al. [113] | |
P84 | 100 | 0.00146 | 2000 | 7.0 | 10 | 35.34 | 40.0 | Donan exclusion | Zaman et al. [118] |
Fermentation Broth | Concentration of SA (g/L) | Yield (%) | Integrated Process | Performance (Purity %) | Reference |
---|---|---|---|---|---|
Actual | 2.0 | - | MF, NF, Crystallization | 99.2 | Law et al. [12] |
Actual | 97.8 | 52.0 | Precipitation, ion-exchange adsorption, | 92.0 | Li et al. [24] |
Synthetic | 51.6 | 70.0 | Direct-crystallization | 95.0 | Luque et al. [58] |
Synthetic | 23.3 | 90.0 | UF, EDBM, Reactive extraction | - | Prochaska et al. [95] |
Actual | 50.0 | 89.5 | Crystallization, cation-exchange resin Amberlite 1R 120H | 99.0 | Lin et al. [139] |
Actual | 200 | 96.7 | MF and NF, Crystallization | 99.2 | Thuy et al. [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadare, O.O.; Ejekwu, O.; Moshokoa, M.F.; Jimoh, M.O.; Daramola, M.O. Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives. Sustainability 2021, 13, 6794. https://doi.org/10.3390/su13126794
Sadare OO, Ejekwu O, Moshokoa MF, Jimoh MO, Daramola MO. Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives. Sustainability. 2021; 13(12):6794. https://doi.org/10.3390/su13126794
Chicago/Turabian StyleSadare, Olawumi O., Olayile Ejekwu, Moloko F. Moshokoa, Monsurat O. Jimoh, and Michael O. Daramola. 2021. "Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives" Sustainability 13, no. 12: 6794. https://doi.org/10.3390/su13126794
APA StyleSadare, O. O., Ejekwu, O., Moshokoa, M. F., Jimoh, M. O., & Daramola, M. O. (2021). Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives. Sustainability, 13(12), 6794. https://doi.org/10.3390/su13126794