Effect of Visible Light on Surface-Attached and Suspended Heterotrophic Bacteria in a Typical Household Rainwater Harvesting Tank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sampling and Collection of Coupon
2.3. Bacterial Enumeration
2.4. Total Biomass Quantification
2.5. Measurement of Physiochemical Parameters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Visible Light on SAB
3.1.1. Effect of Visible Light on SAB at Different Water Depths
3.1.2. Effect of Visible Light on Total Biomass of SAB at Different Water Depths
3.2. Effect of Visible Light on SB
3.3. Effect of Visible Light on Physiochemical Paramters
3.4. Limitation of the Research and Further Study Needed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Fertility and Family Planning 2020: Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2020; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Aug/un_2020_worldfertilityfamilyplanning_highlights.pdf (accessed on 17 April 2021).
- Water UN. Coping with Water Scarcity a Strategic Issue and Priority for System-Wide Action; New York, NY, USA, 2006; Available online: https://www.preventionweb.net/publications/view/1770 (accessed on 17 April 2021).
- World Water Assessment Programme. The United Nations World Water Development Report. New York, NY, USA, 2018. Available online: www.unwater.org/publications/%0Aworld-water-development-report-2018/ (accessed on 17 April 2021).
- Bernard, B.; Joyfred, A. Contribution of Rainfall on Rooftop Rainwater Harvesting and Saving on the Slopes of Mt. Elgon, East Africa. Sci. World J. 2020, 2020, 7196342. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Rainwater Harvesting 101. Available online: https://www.watercache.com/education/rainwater-harvesting-101 (accessed on 24 April 2021).
- Thomas, T.H. The limitations of roofwater harvesting in developing countries. Waterlines 2014, 33, 139–145. [Google Scholar] [CrossRef]
- UN Habitat for a Better Future: Blue Drop Series on Rainwater Harvesting and Utilisation—Book 3 Project Managers and Implemetation Agency. Available online: https://unhabitat.org/blue-drop-series-on-rainwater-harvesting-and-utilisation-book-3project-managers-and-implemetation-agency/ (accessed on 23 April 2021).
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater-Comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Suitability of roof harvested rainwater for potential potable water production: A scoping review. J. Clean. Prod. 2020, 248, 119226. [Google Scholar] [CrossRef]
- Al-Batsh, N.; Al-Khatib, I.A.; Ghannam, S.; Anayah, F.; Jodeh, S.; Hanbali, G.; Khalaf, B.; van der Valk, M. Assessment of rainwater harvesting systems in poor rural communities: A case study from Yatta Area, Palestine. Water 2019, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Coombes, P. Key Messages from a Decade of Water Quality Research into Roof Collected Rainwater Supplies; Burswood Convention Centre Perth: Burswood, WA, Australia, 2006; pp. 1–9. Available online: http://urbanwatercyclesolutions.com/wp-content/uploads/2014/01/RWT_WQ_insights1.pdf (accessed on 20 February 2021).
- Kim, M.; Han, M. Role of Biofilm in Rainwater Tank. Microb. Biofilms. Importance Appl. 2016. [Google Scholar] [CrossRef] [Green Version]
- Van Der Merwe, V.; Duvenage, S.; Korsten, L. Comparison of biofilm formation and water quality when water from different sources was stored in large commercial water storage tanks. J. Water Health 2013, 11, 30–40. [Google Scholar] [CrossRef]
- Evans, C.A.; Coombes, P.J.; Dunstan, R.H.; Harrison, T. Extensive bacterial diversity indicates the potential operation of a dynamic micro-ecology within domestic rainwater storage systems. Sci. Total Environ. 2009, 407, 5206–5215. [Google Scholar] [CrossRef]
- Evison, L.; Sunna, N. Microbial regrowth in household water storage tanks. J. Am. Water Work Assoc. 2001, 93, 85–94. [Google Scholar] [CrossRef]
- Kim, M.; Han, M. Composition and distribution of bacteria in an operating rainwater harvesting tank. Water Sci. Technol. 2011, 63, 1524–1530. [Google Scholar] [CrossRef]
- Amin, M.T.; Kim, T.; Amin, M.N.; Han, M.Y. Effects of Catchment, First-Flush, Storage Conditions, and Time on Microbial Quality in Rainwater Harvesting Systems. Water Environ. Res. 2013, 85, 2317–2329. [Google Scholar] [CrossRef]
- Spinks, A.T. Water Quality, Incident Treatment Train Mechanism and Health Risks Associated with Rainwater Harvesting System in Australia; University Newcastle: Newcastle, Australia, 2007. [Google Scholar]
- Peter, J.; Spinks, A.; Evans, C.; Dunstan, H. Performance of Rainwater Tanks at an Inner City House in Carrington NSW during a Drought; Callaghan, Newcastle, Australia, 2004; Available online: https://www.researchgate.net/publication/228583398_Performance_of_Rainwater_Tanks_at_an_Inner_City_House_in_Carrington_NSW_During_a_Drought (accessed on 20 February 2021).
- Fu, Y.; Peng, H.; Liu, J.; Nguyen, T.H.; Hashmi, M.Z.; Shen, C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. Sci. Total Environ. 2021, 764, 142851. [Google Scholar] [CrossRef]
- Kim, M.; Han, M. Role of biofilms in improving microbial quality in rainwater tanks. Desalin. Water Treat. 2015, 53, 2579–2584. [Google Scholar] [CrossRef]
- Santos, A.L.; Henriques, I.; Gomes, N.C.M.; Almeida, A.; Correia, A.; Cunha, A. Effects of ultraviolet radiation on the abundance, diversity and activity of bacterioneuston and bacterioplankton: Insights from microcosm studies. Aquat. Sci. 2011, 73, 63–77. [Google Scholar] [CrossRef]
- Hockberger, P.E. A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms. Photochem. Photobiol. 2002, 76, 561. [Google Scholar] [CrossRef]
- Ruiz-González, C.; Simó, R.; Sommaruga, R.; Gasol, J.M. Away from darkness: A review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front. Microbiol. 2013, 4, 131. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Thom, M.; Wieprecht, S.; Manz, W.; Gerbersdorf, S.U. The effect of light intensity and shear stress on microbial biostabilization and the community composition of natural biofilms. Res. Rep. Biol. 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dessie, A.; Alemayehu, E.; Mekonen, S.; Legesse, W.; Kloos, H.; Ambelu, A. Solar disinfection: An approach for low-cost household water treatment technology in Southwestern Ethiopia. J. Environ. Health Sci. Eng. 2014, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Diebel, J.; Norda, J.; Kretchmer, O. Average Weather in Seoul. Available online: https://weatherspark.com/m/142033/8/Average-Weather-in-August-in-Seoul-South-Korea#Sections-Sources (accessed on 20 April 2021).
- Kobayashi, H.; Oethinger, M.; Tuohy, M.J.; Procop, G.W.; Bauer, T.W. Improved detection of biofilm-formative bacteria by vortexing and sonication: A pilot study. Clin. Orthop. Relat. Res. 2009, 467, 1360–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiefel, P.; Rosenberg, U.; Schneider, J.; Mauerhofer, S.; Maniura-Weber, K.; Ren, Q. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl. Microbiol. Biotechnol. 2016, 100, 4135–4145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-review HHS Public Access. Res. Rev. J. Eng. Technol. 2017, 6. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133255/ (accessed on 17 April 2021).
- Crystal Violet Staining Solution (0.5%); Cold Spring Harbor Protocols: New York, NY, USA, 2016.
- Lee, D.K. Data transformation: A focus on the interpretation. Korean J. Anesthesiol. 2020, 73, 503–508. [Google Scholar] [CrossRef]
- Hammouri, H.M.; Sabo, R.T.; Alsaadawi, R.; Kheirallah, K.A. Handling skewed data: A comparison of two popular methods. Appl. Sci. 2020, 10, 6247. [Google Scholar] [CrossRef]
- Paula, A.J.; Hwang, G.; Koo, H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat. Commun. 2020, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.; Chen, T.; Zhou, Q.; Liu, Y.; Wei, J.; Waniek, J.J.; Luo, Y. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci. Total Environ. 2020, 734, 139267. [Google Scholar] [CrossRef] [PubMed]
- Agustí, S.; WKrause, J.A.; Marquez, I.; Wassmann, P.; Kristiansen, S.; Duarte, C.M. Arctic (Svalbard islands) active and exported diatom stocks and cell health status. Biogeosciences 2020, 17, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Misic, C.; Covazzi Harriague, A. Development of marine biofilm on plastic: Ecological features in different seasons, temperatures, and light regimes. Hydrobiologia 2019, 835, 129–145. [Google Scholar] [CrossRef]
- De Tender, C.; Devriese, L.I.; Haegeman, A.; Maes, S.; Vangeyte, J.; Cattrijsse, A.; Dawyndt, P.; Ruttink, T. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea. Environ. Sci. Technol. 2017, 51, 7350–7360. [Google Scholar] [CrossRef]
- Hameed, A.; Lai, W.A.; Shahina, M.; Stothard, P.; Young, L.S.; Lin, S.Y.; Sridhar, K.R.; Young, C.C. Differential visible spectral influence on carbon metabolism in heterotrophic marine flavobacteria. FEMS Microbiol. Ecol. 2020, 96, fiaa011. [Google Scholar] [CrossRef]
- Villa, F.; Pitts, B.; Lauchnor, E.; Cappitelli, F.; Stewart, P.S. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface. Front. Microbiol. 2015, 6, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, A.; Makhalanyane, T.P.; Seely, M.; Cowan, D.A. Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol. Ecol. 2015, 24, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Roeselers, G.; Loosdrecht, M.C.M.V.; Muyzer, G. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 2008, 20, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Water Depths | Tank Exposed to Sun | Tank Not Exposed to Sun | ||||
---|---|---|---|---|---|---|
Rate (d−1) | R2 | 95% CI | Rate (d−1) | R2 | 95% CI | |
Top | −0.34 | 0.60 | −0.33 | 0.91 | ||
Middle | −0.17 | 0.41 | −0.03 | 0.53 | ||
Bottom | 0.26 | 0.66 | −0.25 | 0.80 |
Water Depths | Tank Exposed to Sun | ||
---|---|---|---|
Rate (d−1) | R2 | 95% CI | |
Top | 0.03 | 0.67 | |
Middle | 0.03 | 0.94 | |
Bottom | 0.01 | 0.59 |
Water Depths | Tank Exposed to Sun | Tank Not Exposed to Sun | ||||
---|---|---|---|---|---|---|
Rate (d−1) | R2 | 95% CI | Rate (d−1) | R2 | 95% CI | |
Top | −0.03 | 0.57 | −0.26 | 0.97 | ||
Middle | −0.03 | 0.48 | −0.30 | 0.98 | ||
Bottom | −0.17 | 0.97 | 0.02 | 0.38 |
Physiochemical Parameters | Tank Exposed to Sun | Tank Not Exposed to Sun | Average Difference between TES and TNES | |||
---|---|---|---|---|---|---|
Min | Max | Min | Max | |||
pH | Top | 5.42 | 8.29 | 5.97 | 8.4 | 0.48 ± 0.4 |
Middle | 4.9 | 8.29 | 5.72 | 7.95 | 0.46 ± 0.4 | |
Bottom | 4.09 | 7.83 | 6.07 | 7.83 | 0.49 ± 0.4 | |
Temperature (°C) | Top | 21.9 | 28.9 | 20.3 | 27 | 1.51 ± 1.0 |
Middle | 20.2 | 28.9 | 20.6 | 27 | 1.34 ± 0.9 | |
Bottom | 20.7 | 28.6 | 20 | 26.9 | 1.39 ± 1.0 | |
Dissolved oxygen (mg/L) | Top | 5.28 | 8.94 | 5.28 | 7.54 | 1.26 ± 0.4 |
Middle | 5.28 | 8.94 | 5.28 | 7.56 | 1.24 ± 0.4 | |
Bottom | 5.28 | 8.7 | 5.28 | 7.44 | 1.31 ± 0.5 | |
Total dissolved solid (mg/L) | Top | 41 | 57 | 37 | 57 | 4.33 ± 3.8 |
Middle | 38 | 57 | 35 | 60 | 4.58 ± 4.4 | |
Bottom | 31 | 57 | 39 | 57 | 3.08 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriamanantena R., V.; Kim, M.; Han, M. Effect of Visible Light on Surface-Attached and Suspended Heterotrophic Bacteria in a Typical Household Rainwater Harvesting Tank. Sustainability 2021, 13, 5410. https://doi.org/10.3390/su13105410
Andriamanantena R. V, Kim M, Han M. Effect of Visible Light on Surface-Attached and Suspended Heterotrophic Bacteria in a Typical Household Rainwater Harvesting Tank. Sustainability. 2021; 13(10):5410. https://doi.org/10.3390/su13105410
Chicago/Turabian StyleAndriamanantena R., Vonihanitriniaina, Mikyeong Kim, and Mooyoung Han. 2021. "Effect of Visible Light on Surface-Attached and Suspended Heterotrophic Bacteria in a Typical Household Rainwater Harvesting Tank" Sustainability 13, no. 10: 5410. https://doi.org/10.3390/su13105410
APA StyleAndriamanantena R., V., Kim, M., & Han, M. (2021). Effect of Visible Light on Surface-Attached and Suspended Heterotrophic Bacteria in a Typical Household Rainwater Harvesting Tank. Sustainability, 13(10), 5410. https://doi.org/10.3390/su13105410